Analysis and Optimization of the Implicit Broadcasts in FPGA HLS to Improve Maximum Frequency

Abstract

Designs generated by high-level synthesis (HLS) tools typically achieve a lower frequency compared to manual RTL designs. In this work, we study the timing issues in a diverse set of realistic and complex FPGA HLS designs. (1) We observe that in almost all cases the frequency degradation is caused by the broadcast structures generated by the HLS compiler. (2) We classify three major types of broadcasts in HLS-generated designs, including high-fanout data signals, pipeline flow control signals and synchronization signals for concurrent modules. (3) We reveal a number of limitations of the current HLS tools that result in those broadcast-related timing issues. (4) We propose a set of effective yet easy-to-implement approaches, including broadcast-aware scheduling, synchronization pruning, and skid-buffer-based flow control. Our experimental results show that our methods can improve the maximum frequency of a set of nine representative HLS benchmarks by 53% on average. In some cases, the frequency gain is more than 100 MHz.

Publication
In Design Automation Conference (DAC), IEEE/ACM.