
Analysis and Optimization of the Implicit Broadcasts
in FPGA HLS to improve Maximum Frequency

Licheng Guo*, Jason Lau*, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen,

Zhiru Zhang and Jason Cong

University of California Los Angeles, Cornell University

* indicates co-first authors

https://github.com/Licheng-Guo/vivado-hls-broadcast-optimization

https://github.com/Licheng-Guo/vivado-hls-broadcast-optimization

Outline

• Introduction

• Problem Classification

• Solution

• Experiments

RTL Verilog vs. Untimed C/C++
• Much higher developing efficiency

• Less achievable frequency compared to RTL designs

• Hard to debug the critical path

We Analyze the Timing Issues of Complex Designs

We Analyze the Timing Issues of Complex Designs

• Most critical paths are related to broadcasts
• Some are hidden in user codes

• Some are inferred by the HLS compiler

• Lead to high-fanout interconnects and bad timing quality

We Analyze the Timing Issues of Complex Designs

• Most critical paths are related to broadcasts
• Some are hidden in user codes

• Some are inferred by the HLS compiler

• Lead to high-fanout interconnects and bad timing quality

• We categorize common types of broadcasts in HLS-based designs.

We Analyze the Timing Issues of Complex Designs

• Most critical paths are related to broadcasts
• Some are hidden in user codes

• Some are inferred by the HLS compiler

• Lead to high-fanout interconnects and bad timing quality

• We categorize common types of broadcasts in HLS-based designs.

• We analyze the inherent limitations of current HLS tools exposed by the
broadcast problem

We Analyze the Timing Issues of Complex Designs

• Most critical paths are related to broadcasts
• Some are hidden in user codes

• Some are inferred by the HLS compiler

• Lead to high-fanout interconnects and bad timing quality

• We categorize common types of broadcasts in HLS-based designs.

• We analyze the inherent limitations of current HLS tools exposed by the
broadcast problem

• Our lightweight solutions bring significant frequency boost on real-world
HLS designs

Outline

• Introduction

• Problem Classification

• Solution

• Experiments

Classification of Broadcasts

• Data Broadcast
• Originate from the source code

• High fan-out signals in the datapath

• Can be mapped back to certain lines in the source code

Classification of Broadcasts

• Data Broadcast
• Originate from the source code

• High fan-out signals in the datapath

• Can be mapped back to certain lines in the source code

• Control Broadcast
• Originate from the compiler

• High fan-out signals from control logic

• Completely transparent to users

Data Broadcast

• Scenario 1: unrolled loop

Data Broadcast

• Scenario 1: unrolled loop

Data Broadcast

• Scenario 1: unrolled loop

Data Broadcast

• Scenario 1: unrolled loop

Problem: current HLS delay model does not consider the additional net delay

Data Broadcast

• Scenario 1: unrolled loop

underestimated delay --> inadequate registering

Data Broadcast

• Scenario 2: Large buffer

Control Broadcast

• Scenario 1: Pipeline backpressure

Control Broadcast

• Scenario 1: Pipeline backpressure

Control Broadcast

• Scenario 2: Synchronization of parallel logics

• The compiler infers parallelism from sequential code

• Insert synchronization logic to guarantee correctness

Control Broadcast
• Scenario 2: Synchronization of parallel logics

• The compiler infers parallelism from sequential code

• Insert synchronization logic to guarantee correctness

Control Broadcast
• Scenario 2: Synchronization of parallel logics

• The compiler infers parallelism from sequential code

• Insert synchronization logic to guarantee correctness

/

Control Broadcast
• Scenario 2: Synchronization of parallel logics

• The compiler infers parallelism from sequential code

• Insert synchronization logic to guarantee correctness

/

Control Broadcast
• Scenario 2: Synchronization of parallel logics

• The compiler infers parallelism from sequential code

• Insert synchronization logic to guarantee correctness

/

reduce-then-broadcast

Summary of Broadcast Types

• Data Broadcast
• Loop unrolling: loop-invariants variables will be broadcast

• Large buffer: logical buffer entity will become scattered memory units

• Lead to incorrect delay prediction -> bad clock insertion

• Control Broadcast
• Pipeline control: backpressure signals are broadcast to the whole datapath

• Synchronization control: guarantee the correctness of concurrent execution

• Unscalable broadcast of control signals -> not working for large designs

Outline

• Introduction

• Problem Classification

• Solution

• Experiments

Broadcast-Aware Scheduling

+

+

+

+

...

• Isolate the broadcast skeletons and measure the delay

a broadcast skeleton

measure delay

Broadcast-Aware Scheduling

+

+

+

+

...

• Isolate the broadcast skeletons and measure the delay

• The additional delay serve as a conservative calibration

A broadcast skeleton

measure delay

Broadcast-Aware Scheduling

• Example: a genome sequencing accelerator design

• Broadcast elements to 64 datapaths

Broadcast-Aware Scheduling

• Example: a genome sequencing accelerator design

• Broadcast elements to 64 datapaths

0.78 ns

…

Broadcast-Aware Scheduling

• Example: a genome sequencing accelerator design

• Broadcast elements to 64 datapaths

…

Broadcast-Aware Scheduling

Delay of the
aforementioned path

Broadcast-Aware Scheduling

Delay of the
aforementioned path

Overrall frequency
improvements

Skid-Buffer-Based Pipeline Control

• Adopt skid buffer for flow control

item <= 1

Skid-Buffer-Based Pipeline Control

• Adopt skid buffer for flow control

item <= 1

Skid-Buffer-Based Pipeline Control

• Adopt skid buffer for flow control

item <= 1

Skid-Buffer-Based Pipeline Control

• Adopt skid buffer for flow control

item <= 1

Skid-Buffer-Based Pipeline Control

• Buffer width equals that of the pipeline output

• Different pipeline stages have different output width

item <= 1

Skid-Buffer-Based Pipeline Control

• Buffer width equals that of the pipeline output

• Different pipeline stages have different output width

• Dynamic programming to optimize the area overhead

item <= 1

item <= 1 # item <= 1

• Prune away redundant synchronization logic

Synchronization Logic Pruning

• > 50% improvement on our benchmarks

• For more details please check our paper :)

• https://github.com/Licheng-Guo/vivado-hls-broadcast-optimization

Experiment Results

https://github.com/Licheng-Guo/vivado-hls-broadcast-optimization

• We classify and analyze the common types of broadcasts in HLS

• We propose methods:
• delay model calibration to optimize the data broadcast

• min-area skid-buffer to optimize pipeline control

• synchronization pruning to optimize synchronization broadcast

• We bring over 50% of frequency gain to well-optimized designs.

• https://github.com/Licheng-Guo/vivado-hls-broadcast-optimization

Analysis and Optimization of the Implicit Broadcasts
in FPGA HLS to improve Maximum Frequency

Licheng Guo*, Jason Lau*, Yuze Chi, Jie Wang, Cody Hao Yu, Zhe Chen,
Zhiru Zhang and Jason Cong

University of California Los Angeles, Cornell University

https://github.com/Licheng-Guo/vivado-hls-broadcast-optimization

