
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

TARO: Automatic Optimization for
Free-Running Kernels in FPGA HLS

Young-kyu Choi, Member, IEEE, Yuze Chi, Jason Lau, and Jason Cong, Fellow, IEEE

Abstract—Streaming applications have become one of the key
application domains for high-level synthesis (HLS) tools. For a
streaming application, there is a potential to simplify the control
logic by regulating each task with a stream of input and output
data. This is called free-running optimization. But it is difficult
to understand when such optimization can be applied without
changing the functionality of the original design. Moreover, it
takes a large effort to manually apply the optimization across
legacy codes. In this paper, we present TARO framework which
automatically applies the free-running optimization on HLS-
based streaming applications. TARO simplifies the control logic
without degrading the clock frequency or the performance.
Experiments on Alveo U250 shows that we can obtain an average
of 16% LUT and 45% FF reduction for streaming-based systolic
array designs.

I. INTRODUCTION

H IGH-level synthesis (HLS) [1] tools are becoming very
popular in designing field-programmable gate array

(FPGA) accelerators. Programmers can write their algorithms
in high-level languages such as C/C++/OpenCL, and the HLS
tool automatically decides the low-level architecture. Com-
pared with the traditional register-transfer level (RTL) pro-
gramming environment, HLS environment reduces the design
effort and shortens the design cycle. Also, the performance
of HLS designs has become very competitive with recent
advances in HLS optimization techniques [2], [3], [4].

With the increasing demand for utilizing high-level lan-
guages for the FPGA design, many efforts have been made
to enrich the HLS environment by allowing it to express a
wider range of application domains. One such domain includes
streaming applications. For example, ST-Accel [5] features
high-level abstraction and efficient host-FPGA communication
for streaming applications. Spatial [6] is a domain-specific lan-
guage that abstracts control, memory, and interface (including
streams) and boosts productivity of programmers. Fleet [7]
provides a massively parallel streaming model for multiple
streams and instances.

For most of the components in streaming applications, we
can control their operation with streams of input and output
data. For example, in vector add application (Fig. 1 (b)), each

Manuscript received July 14, 2022; revised September 21, 2022; accepted
October 14, 2022. This work is supported by Inha University Research Grant,
National Research Foundation (NRF) Grant funded by Korea Ministry of
Science and ICT (MSIT) (2022R1F1A1074521), and CRISP Program.

Young-kyu Choi is with Department of Computer Engineering, Inha Uni-
versity, Incheon, 22212, South Korea (email: ykc@inha.ac.kr).

Yuze Chi, Jason Lau, and Jason Cong are with Computer Science Depart-
ment, University of California, Los Angeles, CA, 90095, USA.

Jason Cong has a financial interest in Xilinx/AMD.
Digital Object Identifier 10.1109/TCAD.2022.3216544

iteration operates by consuming one token of inputs A and B
and producing one token of output C (=A+B). This module can
be stopped by either not providing an input or not receiving its
output, and we do not need a global control signal to stop its
function. This allows us to reduce the related control signals
in streaming applications.

But previous versions of two FPGA major vendors’ HLS
tools, Xilinx Vivado HLS and Intel OpenCL SDK, had limi-
tations in expressing this functionality. Programmers had to
specify the exact length of the loops (e.g., Fig. 1 (a)) in
all modules of the entire datapath—failing to do so would
make modules wait forever. A single mistake often leads
to deadlock—which is very difficult to debug in the FPGA
development environment. Thus, all components in streaming
applications required control logic to keep track of the number
of input/output data, and they also needed global control
signals to indicate that the module had terminated.

This problem was finally addressed by supporting free-
running kernels [8] in Vitis HLS 2020.1. As the name sug-
gests, a free-running kernel will continuously run, and it
cannot be started or stopped by control signals. It performs
computation only when all the input data are available and
stalls when input FIFOs are empty or output FIFOs are full.
Likewise, recent Intel OpenCL SDK now supports autorun
kernels, which restarts as soon as it finishes execution [9].

void VecAddTask(int len, stream<int> & a,
stream<int> & b, stream<int> & c){

for(int i = 0; i < len; i++){
#pragma HLS pipeline II=l

c.write(a.read() + b.read());
} }

void VecAddTask(stream<int> & a,
stream<int> & b, stream<int> & c){

#pragma HLS interface ap_ctrl_none port=return
for(;;){

#pragma HLS pipeline II=l
c.write(a.read() + b.read());

} }

(a)

LUT FF

186 183

(b)

LUT FF

185 38

Fig. 1. Vector add example (a) Conventional code (b) Free-running optimized

An example of a free-running kernel for vector add is
shown in Fig. 1. In the conventional Vivado HLS code (a),
the length of the vector was provided in a parameter len, and
the function VecAddTask would finish execution when the
loop has iterated len times. The FSM state of VecAddTask
would proceed to the module’s termination state, and the
module asserts the ap_done [8] signal. In the optimized
code (b), on the other hand, VecAddTask would still be
in the execution state even after the loop iterates len times.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

void VecAddTask(int len, tapa::istream<int> & a,
tapa::istream<int> & b, tapa::ostream<int> & c){

[[tapa::pipeline(l)]] //A fully pipelined loop in TAPA
for(int i = e; i < len; i++){

c.write(a.read() + b.read());
} }

Fig. 2. Vector add example written with TAPA attributes

The module derived from Fig. 1 (b) consumes less resources
because we can remove the logic that detects whether a
module has ended (ap_done signal is not needed). The
simpler loop control structure is also the main cause for the
resource reduction—loop initialization, test, and update are not
performed. Moreover, loop pipeline epilogue is removed.

Although the recent version of Vitis HLS and Intel OpenCL
SDK now support the free-running optimization, it is difficult
to benefit from this opportunity. HLS developers still use
previously developed legacy codes which do not have such
optimization, and it would take a large effort to manually apply
the optimization across all legacy codes. Also, novice HLS
programmers are likely to use the conventional loop coding
style in Fig. 1 (a), rather than the unfamiliar coding style in
Fig. 1 (b). Both cases call for automated source modification
to incorporate the free-running optimization. But the challenge
lies in understanding when such optimization can be applied
without changing the functionality of the original design.

This paper investigates the condition when the free-running
optimization can be safely applied on a streaming application
(Section III). Based on the condition learned from the the-
oretical analysis, our tool, TARO1, examines a given legacy
code and automatically applies the free-running optimization
(Section IV). The output code from TARO is then fed into the
existing TAPA [10] and Vitis [11] frameworks, and we can
generate an optimized FPGA accelerator. To our knowledge,
this is the first paper that analyzes the condition for free-
running optimization and provides a framework to automat-
ically apply the source transformation.

II. BACKGROUND: TAPA

TAPA [10] is an open-source, customization-friendly exten-
sion to the HLS C++ language. It quickly generates large-scale
task-parallel dataflow programs through modular, hierarchical
approach. Although it is possible to implement TARO for the
regular Vitis flow, we found it more convenient to implement
TARO on top of TAPA due to a number of benefits—TAPA
provides expressive programming interfaces, high quality of
results, and fast simulation for streaming applications [10].

TAPA programs are dataflow programs that are composed
of hierarchical tasks. There is a top-level task that defines
the interface between the host and the kernel and instantiates
children tasks. Each child task may itself instantiate children
tasks or it can do computation. TAPA tasks can communicate
with other tasks via streaming interfaces—tapa::ostream
for producers and tapa::istream for consumer. TAPA
memory-mapped interfaces (named tapa::mmap) provide
direct access to the FPGA’s external memory (DRAM), which

1stands for TAPA AutoRun Optimizer

Task(){

}

Pre loop
[[tapa::pipeline(..)]]
for(Init;Cond;Update){

Body
}

(a)

Task(){
Pre loop
I nit
[[tapa::pipeline(..)]]
while(Cond){

if(!ISs.empty()){
Body
Update

} } }
(b)

Fig. 3. Code structure before applying free-running optimization (a) Conven-
tional loop structure (b) Flushable loop structure

may be read and/or written. A pipelined loop is annotated with
tapa::pipeline attribute. The vector add example task in
Fig. 1 can be re-written as Fig. 2 in TAPA.

III. FREE-RUNNING OPTIMIZATION

Consider the code structure in Fig. 3 (a). It is a conven-
tional for loop structure with the loop initialization statement
Init, the loop termination condition Cond, the loop update
Update, and the loop body Body. The variables modified in
Init and Update will be referred to as loop index variables.
The statements before the loop will be called PreLoop.

We cannot directly apply free-running optimization on this
conventional loop structure because the code in Fig. 3 (a)
cannot process the previous iterations if input data does not
exist for the current iteration—for example, if the i-th iteration
of a loop (with a pipeline depth of three) stalls due to the lack
of input data, the output of the (i-1)-th and (i-2)-th iteration
will not be written to the output streams (more details in [12],
[13]). This may cause the circuit to fall into a deadlock.

To avoid the deadlock situation, we need to be able to pro-
cess the existing data in the loop pipeline without a new input
data (called flushable pipeline). We could use the flushable
pipeline provided by Vitis HLS [8], but the tool currently has
some limitation in making infinite loops (for(;;)) flushable.
Instead, we use a workaround of applying a simple source-to-
source (S2S) transformation [13] on all pipelined loops in the
design. This is illustrated in Fig. 3 (b). Compared to Fig. 3
(a), the loop Body and Update are inside the body of if(
!ISs.empty()) clause. 2 This means that Body and Update
for the current iteration are evaluated only if all the input
streams in the loop Body have input data. If input data does
not exist, the loop will try to process the current iteration in
the next cycle. The loop will keep processing the existing data
in the pipeline convert it into an output without stalling.

The loop Body is composed of the following instructions:

Inst ::=var := var′ (variable assignment)

|var := op(
−−→
var′) (arithmetic operation) (1)

|var := IS.read() (blocking stream read)
|OS.write(var′) (blocking stream write)

2The stream API empty() returns false if a data exists in an input stream
(but does not consume the data). ISs represents all the input streams referenced
in the Body. The limitation of this approach is that there can be only one
unconditional blocking access to each IS in Body (checked by TARO).

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Task(){
Pre loop
[[tapa::pipeline(..)]]
for(;;){

if(!ISs.empty()){
Body

} } }

Fig. 4. Code structure after applying free-running optimization

void VecAddTask(int len, tapa::istream<int> & a,
tapa::istream<int> & b, tapa::ostream<int> & c){

[[tapa::pipeline(l)]]
for(;;){

if(!a.empty() && !b.empty()){
c.write(a.read() + b.read());

} } }

Fig. 5. Vector add kernel structure after applying free-running optimization

Variables var and var’ include registers and local memory,
but not external memory, because Vitis HLS does not allow
free-running optimization on tasks with external memory ac-
cess [11].

−−→
var′ notates a vector of variables. The input streams

will be referred to as ISs, and the output streams will be re-
ferred to as OSs. We expect all stream accesses to be blocking
(read() and write()), and we do not consider instructions such
as break that may terminate the loop (the reason will be
explained after Lemma 3.1). Arithmetic operation op includes
all operations such as addition, multiplication, and shift.

Fig. 4 is the code structure after applying the free-running
optimization. Compared to the conventional code in Fig. 3
(a), the optimized version will loop continuously with the
for(;;) loop. It does not have Init, Cond, and Update.
For instance, the vector add example in Fig. 2 will be modified
to Fig. 5.

Our goal is to show that after applying the free-running
optimization on multiple tasks that contain the conventional
loop structure, the optimized design will write the same output
data to the external memory as the original design. Due to the
space limitation, we will only briefly outline the reasoning.

We make the following assumptions:

(A1) The conventional code does not deadlock.
(A2) All tasks have flushable pipeline loops.
(A3) Body has at least one access to an IS.
(A4) Loop index variables are not referenced in Body.

The programmer should ensure (A1) and provide a working
design that does not deadlock. TARO automatically transforms
all tasks’ loop pipelines to the flushable structure in Fig. 3 (b)
(A2). TARO also checks if assumptions (A3) (A4) are met in
the target loops. The implementation details will be explained
in Section IV.

Let us suppose that the loop in the conventional code iterates
N times. Then we claim that:

Lemma 3.1: If the ISs in the transformed code receive the
same stream of data (ISs.read()) as the conventional code, the
OS data (var in OSs.write(var)) in Body of the transformed
code matches that of the conventional code from first to N-th
iteration.

At the beginning of the first iteration of Body, the value of
all variables var in the transformed code, except the loop index
variables assigned in Init, matches that of the conventional
code. In the first iteration of Body, the same operation op
is performed and the loop index variables are not referenced
(A4). This means that if the ISs in the transformed code
receive the same stream of data as the conventional code,
all variables assigned after performing arithmetic operations
(var := op(

−−→
var′)) in the first iteration of Body in the

transformed code match that of the conventional code. These
newly assigned variables can be either written to OSs or
referenced in the subsequent iterations. The OS writes will
be performed for the first iteration even if input data is not
provided for the succeeding iterations because the loop is
flushable (A2). The design does not deadlock due to the
assumption (A1). Thus, the OS data (var in OSs.write(var))
is the same on the first iteration. By a similar reasoning, the
same output stream will be written from the second to the
N-th iteration. The loop does not terminate before the N-th
iteration because break is not allowed in Eq. 1.

Lemma 3.2: If the ISs in the transformed code receive the
same stream of data as the conventional code, the OSs in the
Body of the transformed code does not write data after the
N-th iteration.

After N iterations, the transformed code will try to evaluate
the (N+1)-th iteration of Body. However, since the ISs receive
the same stream of data, the input data for the (N+1)-th
iteration does not exist. The Body of the transformed code
has at least one blocking IS access (A3), and the lack of input
data will block the loop pipeline (due to the if(!ISs.empty())
clause). Thus, all Body instructions for the (N+1)-th iteration
will not be evaluated, and the transformed code does not write
data into OSs after the N-th iteration.

Theorem 3.3: If the ISs in the transformed code receive the
same stream of data as the conventional code, the OS data in
the transformed code matches that of the conventional code.

If Body’s OS data in the transformed code does not match
that of the conventional code, it means that either the output
until the N-th iteration is different or there exists output after
the N-th iteration. This contradicts Lemma 3.1 or Lemma 3.2.
Also, there is no difference in PreLoop because no code
modification has been made in that part.

Theorem 3.4: The data written to the external memory in
the transformed code matches that of the data written in the
conventional code.

Starting from the tasks that have only output streams and
external memory access (will be referred to as source tasks),
we assign a level that corresponds to the longest distance from
the source tasks. The output stream data from the source tasks
do not change because the tasks with external memory access
are not free-running optimized (Eq. 1). Since the level 1 tasks’
ISs receive the same stream of data from the source tasks,
the level 1 tasks’ OS data matches the conventional code by
Theorem 3.3. By the same reasoning, the output streams from
level 2, 3, ... tasks also match the original design. Thus, a
DRAM-accessing task, which receives data from some of these
tasks, will write the same data to the external memory.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

tapa::task()
.invoke(ReadATaskJ ...)
.invoke(ReadBTaskJ ...)
.invoke<tapa::detach>(VecAddTaskJ ...)
.invoke(WriteCTaskJ ...);

Fig. 6. Detaching the free-running task for vector add

Ext mem

.,_ ____________ L --------------•

Compute

Matrix C
Collect

Compute

Matrix C
Collect

Compute

Matrix C
Collect

Compute

Fig. 7. Systolic array architecture for MM

IV. IMPLEMENTATION

Given a TAPA-compatible C++ input source code, TARO
utilizes the APIs in Clang/LLVM 8 [14] to traverse through
all tasks and applies if(!ISs.empty()) on all pipelined loops
to make them flushable (A2). Next, TARO finds loops that
can be free-running optimized. If a target loop satisfies the
assumptions listed in Section III and its Body is composed of
instructions listed in Eq. 1, TARO automatically applies the
free-running optimization (Fig. 4) and produces an optimized
TAPA code as the output. We use the existing TAPA compi-
lation flow to generate an FPGA bitstream from the output
code.

Pipelined loops are found by checking if a loop has an
attribute of tapa::pipeline. Tasks with external memory
access are excluded from the optimization if TARO finds ar-
guments with type tapa::mmap. TARO looks for all stream
references in the loop Body and checks if the assumption (A3)
holds. Assumption (A4) is checked by making a list of loop
index variables from the loop, and searching for all references
of those variables in the loop Body.

Next, we modify TAPA so that we can assign a template
argument <tapa::detach> for the free-running optimized
tasks (Fig. 6). This argument is sent to TAPA’s global task
management scheme. TAPA maintains a global finite-state
machine (FSM) which changes from idle to running
when the user starts the kernel. Without the free-running
optimization, the global state becomes idle only when all
the tasks finish and enter the idle state. We modify this
scheme so that the detach’ed tasks are excluded from the
global idle state. Even if the free-running optimized tasks
never become idle state, the global FSM now can become
idle, and the kernel will terminate properly.

V. EXPERIMENTAL RESULT

We feed TARO-optimized C++ code into the TAPA frame-
work [10], which utilize Xilinx’s Vitis 2020.2 suite [11] to
synthesize the design. Autobridge [15] improves the design’s
timing. We target Xilinx’s Alveo U250 board [16] with the
clock frequency of 300 MHz.

Initially, we applied the free-running optimization on the
vector add application. But we found that the overall LUT/FF
reduction is only about 2%/4%. Even though there was a
significant reduction of resource for the compute task in Fig. 1,
the proportion of this task in the overall design is very small
because we need three DRAM access tasks (for a, b, and c).
Thus the overall LUT and FF reduction ratio is insignificant.
Instead, we have applied the proposed optimization on bench-
marks with a high proportion of compute and data distribution
tasks compared to external memory access tasks—specifically,
the designs in systolic array architecture [17] with only few
DRAM access points. It includes dense matrix-vector multipli-
cation (MV), matrix-matrix multiplication (MM), Needleman-
Wunsch (NW), and convolutional neural network (CNN). All
benchmarks follow the architecture proposed in PolySA (Fig. 5
of [17])—an example for MM is displayed in Fig. 7. The
ratio of tasks with DRAM access for these applications are
4.7%–6.9%—we have adjusted the length L of the arrays to
approximately match the ratio. The data is in short type, and
all innermost loops are pipelined. The source transformation
for all benchmarks was performed in less than one second.

Table I presents the LUT/FF reduction after applying the
free-running optimization. We report the Alveo U250 post-
PnR resource consumption of the kernel logic and exclude
that of the static region. DSP and BRAM consumption is
omitted since the difference is small. Note that the baseline
implementation refers to the design with the flushable loop
structure in Fig. 3 (b).

TABLE I
RESOURCE/FREQUENCY/CYCLE REDUCTION AFTER APPLYING

FREE-RUNNING OPTIMIZATION

App. LUT FF Freq Cycles
Mat-vec Base 18,064 41,221 300 10,585

Mult. Opt 14,957 24,100 300 10,585
(MV) (17.2%) (41.5%) (0%) (0%)

Mat-mat Base 14,785 45,277 300 13,114
mult. Opt 10,829 21,804 300 13,114
(MM) (26.8%) (51.8%) (0%) (0%)

Needleman Base 7,957 16,197 300 2,212
-Wunsch Opt 6,922 9,490 300 2,212

(NW) (13.0%) (41.4%) (0%) (0%)
Convol. Base 23,345 64,104 300 32,243

Neu. Net. Opt 21,789 33,981 300 32,227
(CNN) (6.7%) (46.7%) (0%) (0%)

Average (15.9%) (45.4%) (0%) (0%)

The table shows that, on average, we can obtain 15.9% and
45.4% reduction on LUT and FF consumption, respectively.
This is due to the simplification of the loop control and the
global task management logic. There is no change in the clock
frequency in all benchmarks. The clock cycle for CNN has
been slightly changed with the simplification of the loop FSM
state, but the difference is minimal.

The amount of resource reduction, however, widely varies
on the design parameters. The resource consumption for MM
after changing the data representation can be observed in
Fig. 8 (a). As we utilize more complex data representation,
the compute logic becomes larger than the control logic.
This reduces the LUT saving from 27% (short type) to 11%
(double type). Also, since the free-running optimization cannot

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

60%

50% c
0

40% +-' u
~ 30% "'0
OJ
!.....

20% OJ
u
!.....

10% ~
0
Vl

0% OJ
0::::

•

•

,-------
1 h I
1 s ort 1
I----- _I

~LUT~FF

int long float
long

Data representation
(a)

double

60%

c 50%
0
+-' 40% u
~

"'0 30%
OJ
!.....

OJ 20% u
!.....

~
10% 0

Vl
OJ

0:::: 0%

~LUT~FF

,-------
2.3% :4.7%: 9.4% 18.8% 37.5%

L----- _I

Proportion of ext mem access tasks

(b)

Fig. 8. Resource reduction for MM after varying (a) the data representation
and (b) the proportion of external memory accessing tasks. (The result in
Table I was obtained using short type and 4.7% external memory access
tasks.)

be applied on tasks with external memory access, a design
with many DRAM-access tasks benefits less from the free-
running optimization—if L was adjusted so that the ratio
of DRAM-access tasks is increased from 4.7% to 37.5%,
the LUT saving reduces from 27% to 12% (Fig. 8 (b)).
From these observations, we can conclude that free-running
optimization is only effective for architectures with 1) high
proportion of control logic compared to compute logic and 2)
high proportion of non-external memory access tasks.

VI. RELATED WORKS

There are many works that automatically optimizes HLS
designs by predicting the performance and inserting the best
set of HLS directives on the target designs. COMBA [18]
is a comprehensive HLS optimization framework that mod-
els the effect of HLS directives and performs metric-guided
design space exploration. The work in [19] proposes a meta-
heuristic approach of combining simulated annealing, genetic
algorithm, and ant colony optimization with efficient hyper-
parameters. The work in [20] learns the knowledge from
previous designs to infer the effect of applying HLS direc-
tives on new designs. These works typically optimizes HLS
designs by finding the best trade-off point between resource
consumption and performance. TARO, on the other hand,
reduces the resource consumption of the HLS control logic
without degrading the performance of the baseline design.

There are only a few works that optimize the control logic in
HLS generated circuits. Clockwork [21] fuses the FIFO control
logic and the buffer of two stages in an image processing
pipeline. The work in [4] improves the synchronization and
pipelining of HLS broadcast control signals. None of these
papers optimizes the loop control and global task management
logic as TARO, and their approaches are orthogonal to the
proposed free-running optimization.

VII. CONCLUSION

We have proposed TARO framework which automatically
applies the free-running optimization on HLS-based streaming
applications. The free-running optimization reduces the LUT
and FF needed for the loop control and global task manage-
ment logic. When a design is composed of flushable loops, the
optimization can be applied to a pipelined loop with blocking
stream accesses and no loop index variables or breaks in its
loop body. A same sequence of data will be read and written

in the stream and external memory access after making the
source transformation. We have found that the transformation
is effective only when the proportion of control logic is
high compared to the computation logic and the proportion
of the stream access tasks is high compared to the DRAM
access tasks. TARO has been implemented on top of TAPA,
and it has been open-sourced at https://github.com/UCLA-
VAST/tapa/tree/taro. We expect that TARO will help reduce
the control overhead of streaming applications with minimal
code changes from the HLS programmers.

REFERENCES

[1] J. Cong et al., “High-Level Synthesis for FPGAs: From Prototyping to
Deployment,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 30, no. 4, pp. 473–491, Mar. 2011.

[2] J. Cheng, L. Josipović, G. A. Constantinides, P. Ienne, and J. Wickerson,
“Combining Dynamic & Static Scheduling in High-level Synthesis,” in
FPGA, 2020, pp. 288–298.

[3] Y. T. Chen, J. H. Kim, K. Li, G. Hoyes, and J. H. Anderson, “High-
Level Synthesis Techniques to Generate Deeply Pipelined Circuits for
FPGAs with Registered Routing,” in FPT, 2019, pp. 375–378.

[4] L. Guo et al., “Analysis and Optimization of the Implicit Broadcasts in
FPGA HLS to Improve Maximum Frequency,” in DAC, 2020, pp. 1–6.

[5] Z. Ruan, T. He, B. Li, P. Zhou, and J. Cong, “ST-Accel: A High-
Level Programming Platform for Streaming Applications on FPGA,”
in FCCM, 2018, pp. 9–16.

[6] D. Koeplinger et al., “Spatial: A language and compiler for application
accelerators,” in PLDI, 2018, pp. 296–311.

[7] J. Thomas, P. Hanrahan, and M. Zaharia, “Fleet: A Framework for
Massively Parallel Streaming on FPGAs,” in ASPLOS, 2020, pp. 639–
651.

[8] Xilinx, “Vitis High-Level Synthesis 2020.2 User Guide (UG1399),”
2021. [Online]. Available: https://www.xilinx.com/

[9] Intel, “Intel FPGA SDK for OpenCL Pro Edition: Programming Guide,”
2020.

[10] Y. Chi, L. Guo, J. Lau, Y.-k. Choi, J. Wang, and J. Cong, “Extending
high-level synthesis for task-parallel programs,” in FCCM, 2021, pp.
204–213.

[11] Xilinx, “Vitis Unified Software Development Platform 2020.2 Documen-
tation (UG1416),” 2021. [Online]. Available: https://www.xilinx.com/

[12] S. Dai, M. Tan, K. Hao, and Z. Zhang, “Flushing-Enabled Loop
Pipelining for High-Level Synthesis,” in DAC, 2014, pp. 1–6.

[13] Y.-k. Choi, Y. Chi, J. Wang, and J. Cong, “FLASH: Fast, ParalleL,
and Accurate Simulator for HLS,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 39, no. 12, pp. 4828–4841, Dec. 2020.

[14] Clang. (2022) Clang: a C language family frontend for LLVM.
[Online]. Available: https://clang.llvm.org

[15] L. Guo et al., “AutoBridge: Coupling Coarse-Grained Floorplanning and
Pipelining for High-Frequency HLS Design on Multi-Die FPGAs,” in
FPGA, 2021, pp. 81–92.

[16] Xilinx. (2021) Alveo Data Center Accelerator Card Platforms
(UG1120). [Online]. Available: https://www.xilinx.com/

[17] J. Cong and J. Wang, “PolySA: Polyhedral-Based Systolic Array Auto-
Compilation,” in ICCAD, 2018, pp. 1–8.

[18] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “Comba: A
comprehensive model-based analysis framework for high level synthesis
of real applications,” in ICCAD, 2017, pp. 430–437.

[19] Z. Wang and B. C. Schafer, “Machine learning to set meta-heuristic
specific parameters for high-level synthesis design space exploration,”
in DAC, 2020, pp. 1–6.

[20] L. Ferretti et al., “Leveraging prior knowledge for effective design-space
exploration in high-level synthesis,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 39, no. 11, pp. 3736–3747, Oct. 2020.

[21] D. Huff, S. Dai, and P. Hanrahan, “Clockwork: Resource-efficient static
scheduling for multi-rate image processing applications on FPGAs,” in
FCCM, 2021, pp. 186–194.

https://www.xilinx.com/
https://www.xilinx.com/
https://clang.llvm.org
https://www.xilinx.com/

	Introduction
	Background: TAPA
	Free-Running Optimization
	Implementation
	Experimental Result
	Related Works
	Conclusion
	References

