
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 1

FLASH: Fast, ParalleL, and Accurate
Simulator for HLS

Young-kyu Choi, Member, IEEE, Yuze Chi, Jie Wang, and Jason Cong, Fellow, IEEE

Abstract—A large semantic gap between a high-level synthesis
(HLS) design and a low-level RTL simulation environment often
creates a barrier for those who are not FPGA experts. Moreover,
such a low-level simulation takes a long time to complete.
Software HLS simulators can help bridge this gap and accelerate
the simulation process; but their shortcoming is that they do
not provide performance estimation. To make matters worse,
we found that the current FPGA HLS commercial software
simulators sometimes produce incorrect results. In order to solve
these performance estimation and correctness problems while
maintaining the high speed of software simulators, this paper
proposes a new HLS simulation flow named FLASH. The main
idea behind the proposed flow is to extract scheduling information
from the HLS tool and automatically construct an equivalent
cycle-accurate simulation model while preserving C semantics.
Experimental results show that FLASH runs three orders of
magnitude faster than the RTL simulation.

Index Terms—Simulation acceleration, high-level synthesis,
field-programmable gate array, source-to-source transformation.

I. INTRODUCTION

ALTHOUGH the field-programmable gate array (FPGA)
has many promising features that include power-

efficiency and reconfigurability, the low-level programming
environment makes it difficult for programmers to use the
platform. In order to solve this problem, many high-level
synthesis (HLS) tools such as Xilinx Vivado HLS [1], [2]
and Intel OpenCL HLS [3] have been released. These tools
allow programmers to design FPGA applications with high-
level languages such as C or OpenCL. This trend is reinforced
by recent efforts on FPGA programming with languages of
higher abstraction—such as Spark or Halide [4]–[6].

Even though such progress has been made on the de-
sign automation side, a large semantic gap still exists on
the simulation side. Programmers often need to use low-
level register-transfer level (RTL) simulators (e.g., Model-
Sim [7], NCSim [8], or VCS [9]) or on-board emulators
(e.g., Zebu [10]) and try to map the result back to HLS. The
result is often incomprehensible to those who are not FPGA
experts. Moreover, low-level RTL simulation takes a very long

Manuscript received June 21, 2019; revised December 6, 2019; ac-
cepted January 7, 2020. Date of publication March 1, 2020; date of cur-
rent version October 1, 2020. This paper was recommended by Asso-
ciate Editor J. Cortadella. The authors are with Computer Science Depart-
ment, University of California, Los Angeles, CA, 90095, USA. E-mail:
{ykchoi,chiyuze,jiewang,cong}@cs.ucla.edu

This research is in part supported by Intel and NSF Joint Research Center
on Computer Assisted Programming for Heterogeneous Architectures (CAPA)
(CCF-1723773) and Baidu, NEC, and VMWare under the CDSC industrial
partnership.

Digital Object Identifier XX.XXXX/TCAD.2020.XXXXXXX

time. Some work has been done to automate hardware probe
insertion from the HLS source file [11]–[17], but this work
requires regeneration of the FPGA bitstream if there is a
change in the debugging point. The turnaround time is often
in hours. On-board emulators also have a similar problem and
require a long time for the bitstream generation.

These problems can be partially solved by the software-
based simulators provided by HLS tools. The HLS software
simulators compile the C or OpenCL source code for na-
tive execution on the host machine. It takes little time to
reconfigure the debugging points, and no semantic gap exists
between the simulation and the design. However, a well-
known shortcoming of these simulators is that most of them do
not provide performance estimation. In addition, we found a
critical deficiency—they sometimes provide incorrect results.

An example can be found in the molecular dynamics
simulation [18] (Fig. 1). Multiple distance processing elements
(Dist PEs) filter out faraway molecules above threshold and
send them to Force PE. The pruned molecules create a bubble
(empty data) in the FIFO, and Force PE processes only the
valid data (after non-blocking read) in the order they are
received from any of the FIFOs. However, if the modules are
instantiated in the order of (Dist PE1, PE2, . . . Force PE)
in the source file, Vivado HLS software simulator finishes the
simulation of Dist PE1 first, followed by Dist PE2, and so on.
As a result, by the time the Force PE is simulated, the bubbles
in the FIFOs are completely removed, and the Force PE output
ordering can be entirely different from the RTL simulation. If
one is trying to quickly trace the source of a problem that was
observed in the output of an RTL simulation, the person will
not be able to reproduce the problematic state in the software
simulation.

Another problematic example can be found in the artificial
deadlock situation [19], which occurs when the depth of the
FIFO is smaller than the latency difference among modules
(details in Section III-B). The issue is that the HLS software
simulator cannot detect the deadlock situation and proceeds as
if there is no problem with the design. We also have found
a problem in the simulation of feedback loops where the
feedback data is ignored by the HLS tool (Section III-C).

The primary reason for the incorrect simulation result is
that HLS software simulators do not guarantee cycle accuracy.
The comparison between the software simulator of the two
most popular ([20]) commercial FPGA HLS tools, Xilinx
Vivado HLS (VHLS) [2] and Intel OpenCL HLS (AOCL)
[3], is presented in Table I. VHLS assumes unlimited FIFO
depth, which makes it difficult to accurately model FIFO
fullness/emptiness. Also, the sequential simulation execution

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 2

Dist PE1 Dist PE2 Dist PE3 Dist PE4

i=1 : (bubble) 2 (bubble) (bubble)
i=2 : 5 (bubble) (bubble) 8
I=3 : (bubble) 10 11 (bubble)

(II=4)

Force PE(II=1)
(Round-robin
non-blocking

read)

RTL sim output: 2

SW sim output: 5
Simulated in
instantiation
order

Does not
match

#pragma HLS dataflow
Dist_PE1();
Dist_PE2();
Dist_PE3();
Dist_PE4();
Force_PE();

< HLS C code> 5 8 10 11

5
2
11
8 → Missing bubbles

10

2 11 8 10

r<thres

12

11 10

9

8

7

6
5

43

2

1

Fig. 1. Molecular dynamics simulation [18]

TABLE I
COMPARISON OF THE SOFTWARE SIMULATION OF XILINX VIVADO HLS

[2] AND INTEL OPENCL HLS [3]. UNDESIRABLE CHARACTERISTICS ARE
IN BOLD.

Xilinx VHLS C Sim Intel AOCL Sim
FIFO depth Unlimited Exact
Exec model Sequential Concurrent

Feedback Not supported Supported
Sim speed ∼5 Mcycle/s ∼1 Mcycle/s
Sim order Deterministic Non-deterministic
Cycle-acc Not cycle-accurate Not cycle-accurate

model prevents correctly simulating designs with feedback
loops (Section III-C). AOCL simulates about 5X slower than
VHLS, but it correctly simulates the FIFO depth. The tool
assigns a thread to each module for concurrent simulation;
but the execution order of the threads is not deterministic and
may produce different results in different simulation runs for
cases in Section III.

HLS design steps and conventional simulation flows are
shown in Fig. 2. A software simulator runs fast but provides
no cycle estimation and may have the correctness problem. An
RTL simulator is accurate but runs slow, because it simulates
low-level implementation details. We attempt to devise a new
simulation flow that solves both problems. The idea is to
add the scheduling information of C statements in the HLS
software simulation. The new simulation flow would be faster
than the RTL simulation without the allocation / binding
information and the component libraries; it would solve the
correctness problem of the software simulation and provide
accurate performance estimation with its cycle accuracy.

Although simulating based on the LLVM intermediate
representation (IR) is a possible option, we have instead
decided to simulate in C syntax (augmented with scheduling
information). This allows us to raise the simulation abstraction
level—accelerating the simulation process and making it easier
for programmers to understand what is being simulated. To
our knowledge, this is the first HLS-based software simulation
flow that takes such an approach.

By taking such an approach, however, several challenges
were encountered (elaborated on in Section IV). One problem
is how to guarantee cycle-accuracy of untimed C statements.
Another is correctly simulating the parallelism that is inher-
ent in hardware (and the corresponding RTL simulation) in
sequential C semantics.

HLS C code Compilation Binding

Allocation

Scheduling

Generation RTL code

Library

SW
simulator

Proposed
simulator

RTL
simulatorscheduling info

stmt,loop,
func, ...

Fig. 2. HLS design steps [21] and comparison of simulation flows

In this paper, we propose FLASH—an HLS software simu-
lation (HSS) flow that addresses these challenges. We describe
transformations that allow cycle-accurate simulation of FIFO
communication (defined in Section IV). Also, a method is
presented to simulate task-level and pipelined parallelism with
C semantics. These steps are described in Section V.

In order to simulate pipelined parallelism, variables need to
be duplicated to match the depth of a loop pipeline (explained
in Section V-B1). But this results in a redundant data copy,
which slows down the simulation. We propose optimization
techniques to reduce this overhead in Section VI.

We obtain the scheduling information from the HLS synthe-
sis report and automatically generate a new simulation code
based on the information. The new simulation code is made to
be compatible with the conventional HLS software simulator
for easy integration with the existing tool. The overall flow is
described in Section VII.

FLASH also provides correctness and performance debug-
ging support for programmers. In order to ease the process of
detecting deadlocks or stalls, a set of source-level directives is
included. Also, the debugging time is shortened by allowing
variables to be added to the capture list in the middle of
simulation. This will be explained in Section VIII.

The contribution of this paper can be summarized as fol-
lows:

• We show that simulating based on the scheduling infor-
mation can help solve the correctness issue of HLS soft-
ware simulators and rapidly provide accurate performance
estimation.

• We develop a framework that allows fast cycle-accurate
simulation of an HLS design. Several code transformation
techniques have been presented to enable this process.
Moreover, optimizations are proposed to accelerate the
simulation speed.

• We propose unique debugging features for HSS.

This paper is an extended version of our preliminary work
presented in [22]. Compared to [22], this paper presents new
optimizations to accelerate the simulation speed (Section VI).
We also propose novel source-level debugging features (Sec-
tion VIII). Moreover, we add a formal definition of the
problem and a detailed explanation of the proposed solution
and the code transformation process (Sections III, IV, and V).

Our current initial version is based on the Vivado HLS tool,
but we hope to extend our work to the Intel HLS tool if it
provides detailed internal scheduling information in the future.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 3

II. RELATED WORK

Work in [11]–[17] describe frameworks that allow users to
specify debugging points in high-level language and synthesize
hardware probes into the FPGA for analysis. They can be
categorized into work that is more focused on verifying func-
tional correctness [11]–[15] and work that is more focused on
extracting performance-related parameters [16], [17]. Goeders
and Wilton describe how to record and replay the value of
variables from an HLS-generated circuit [11]. Their work is
extended to cover compiler-optimized designs in [12] and to
allow offline signal restoration in [13]. Monson and Hutchings
introduce event observability ports (EOP) to enable source-
level signal trace and explain how to combine multiple signals
to reduce trace buffer size [14], [15]. HLScope [16] describes
an in-FPGA monitoring flow that extracts cycle information
from FPGA designs written in C. The work of Verma et
al. [17] is based on OpenCL and measures stall latency and
monitors memory access patterns by utilizing trace buffers to
store an event’s timestamp. However, these hardware-based
HLS debuggers typically require hours of initial overhead for
bitstream generation.

There are other software-based HLS simulators. The LegUp
HLS [23] simulator provides a speedup prediction based on
the profiling result of the source code and the execution cycle
from its synthesis result. HLScope+ [24] describes a method
to extract cycle information that is hidden by HLS abstraction
and uses VHLS C simulation to predict the performance for
applications with dynamic behavior. These works, however, do
not guarantee cycle-accuracy.

There are several SystemC simulators (e.g., [25]–[27]) that
achieve cycle-accuracy for the source code that has explicit
scheduling information specified by the programmer. However,
constructing a cycle-accurate input design file may be too
difficult for non-experts. Our flow, on the other hand, achieves
cycle-accuracy for an HLS C source code without requiring
user-defined scheduling information.

There is a class of work that accelerates the simulation of
an HLS tool’s output RTL code by converting the RTL code
into a cycle-accurate C model [28], [29]. Mahapatra et al. [28]
report a speedup of 5X after removing the core computation
and only maintaining the IO timing, but such an approach
cannot be used for data-dependent benchmarks. Verilator [29],
on the other hand, can be used to provide a functionally correct
and cycle-accurate HLS simulation as our work. Verilator
employs several techniques for acceleration—such as removal
of time delays, randomized unknown value, and creation of
table lookups. But the speedup in Verilator is limited because
it is very difficult to completely remove allocation and binding
information from the RTL code—whereas in our approach, this
information is never added in the first place. A quantitative
comparison is presented in Section IX.

III. PROBLEM DESCRIPTION AND MOTIVATING EXAMPLES

In this section, we describe four classes of problems (three
correctness-related and one performance-related) in current
HLS software simulators. The problems are demonstrated with
relevant examples in the literature.

<Vivado HLS SW simulation>

<Vivado HLS RTL co-simulation>

<HLS code>
Dist_PE1();
Dist_PE2();
Dist_PE3();
Dist_PE4();
Force_PE();

<Architecture>

Dist PE1 F1 write

Dist PE2 F2 write

Force PE F1 nb rd

Force PE F2 nb rd
t

Dist
PE1

Force PE

Dist
PE2

Dist
PE3

Dist
PE4

F1 F2 F3 F4
Simulated in
instantiation
order

𝑡ிଶ_ௐோଵ

𝑡ிଵ_ோଵ

𝑡ிଶ_ோଵ

𝑡ிଵ_ௐோଵ

𝑡ிଵ_ோଶ

Dist PE1 F1 write

Dist PE2 F2 write
Force PE F1 nb rd

Force PE F2 nb rd

5

2

N/A 5

2

5

5

2

...

2 ...

Fig. 3. Timing diagram of the molecular dynamics simulation in Fig. 1 (FIFO
transactions among only Dist PE1, Dist PE2, and Force PE are shown)

A. Data Ordering Problem

The problem of incorrect output ordering in the HSS for
molecular dynamics simulation was presented in our intro-
duction. In this section we discuss the cause of this problem
in more detail. Fig. 3 shows the timing diagram of the FIFO
transactions among Dist PE1, Dist PE2, and Force PE in Fig. 1.
Dist PE1 and Dist PE2 communicate with Force PE through
FIFO F1 and F2 respectively. Consider a case where data (2)
is written to F2 before data read from F1 and F2, and F1 is
written (data 5) afterwards (illustrated in the RTL simulation
part of Fig. 3). At the time of the first F1 non-blocking read
attempt (tF1 RD1), the first F1 write (tF1 WR1) has not yet
occurred (tF1 RD1 < tF1 WR1), and the successful F2 read
precedes the successful F1 read (tF2 RD1 < tF1 RD2).

In the VHLS software simulation, however, data (5) is
available in the first read attempt to F1 because Dist PE1
is evaluated entirely before Dist PE2 and Force PE. That is,
unlike the RTL simulation, the first F1 write has already oc-
curred before the first F1 read attempt (tF1 RD1 > tF1 WR1).
As a result, the successful F2 read happens after the suc-
cessful F1 read (tF2 RD1 > tF1 RD2). The ordering of the
data processed at Force PE is not maintained. If the HSS
has evaluated the FIFO write correctly before each FIFO
read attempts (i.e., tF1 RD1 < tF1 WR1 < tF1 RD2 and
tF2 WR1 < tF2 RD1), this problem would not have occurred.
In the AOCL simulation, the simulation order of the producer
modules is undetermined, and a similar data ordering problem
occurs.

As demonstrated in the example, the HLS software simula-
tor should evaluate the FIFO writes before each non-blocking
read attempt in the same order as in the RTL simulation. If
not, a data ordering problem may occur. The data ordering
problem is defined as a case where a consumer module MC is
reading data in a non-blocking fashion from multiple producer
modules MP through FIFOs, and the order of data processed
at MC in the RTL simulation is not maintained in the HSS.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 4

B. Module Latency Problem

Consider an example in Fig. 4 (named toy_mpath) where
the module M2 has a latency of 5 and M3 has a latency of 15.
All FIFOs have a depth of 2. After M2 has produced two output
elements, M4 cannot consume any of them because fifo4 is
still empty due to the long latency of M3. Because of back
pressure from M2 and fifo3, fifo1 becomes full. Then M1
stops producing output to fifo2 because fifo1 and fifo2
have to be written in the same cycle. fifo2 eventually
becomes empty, which blocks the pipeline of M3. Even though
M3 has consumed some remaining data in fifo2, fifo4
is still empty because of M3’s long latency. Then none of
the modules can do any further useful work, and the circuit
deadlocks. This is called an artificial deadlock. The artificial
deadlock is caused by the mismatching latency of multiple
datapaths and inadequate FIFO depth to balance the latency
difference [19]. We can also observe this in the architecture
for stencil computations [30] that contains modules and FIFOs
with various latencies and depths.

In order to reproduce the deadlock situation, an HLS soft-
ware simulator should create the output data after reading input
with a delay that reflects the module latency. However, existing
HLS software simulators evaluate each iteration of a loop as if
the data is instantaneously passed from input to output. Thus,
the latency among different datapaths is not simulated, and
the artificial deadlock does not occur. As a result, even after
running a HSS, the user is unaware of a potential problem that
might occur during actual on-board execution.

We will refer to this problem as the module latency problem.
Suppose that a module has a sequence of C FIFO read and
write statements cstmt1, ... cstmtc, ... cstmtC . If cstmtc is
a blocking read/write, multiple read/write attempts may be
performed before the read/write is completed. If non-blocking,
read/write is always completed on the first attempt. We assume
that the HLS tool has scheduled a delay of delayc cycles
between the completion of cstmtc and the first attempt of
cstmtc+1. This delay reflects the computation latency. The
module latency problem is defined as a case where HSS fails
to simulate delayc between the first attempt of cstmtc+1 and
the completion of cstmtc for some of c = 1 ... C − 1.

Note that we have modified M2 to the code shown in
Fig. 5. The purpose is to make a fair comparison of the
simulation time by making the module simulation to finish
at the same point (the HLS RTL simulation of Fig. 4 will
deadlock, whereas HSS will not). If the input FIFO is empty,
a bubble is inserted into the pipeline (line 4 of Fig. 5)—this
allows the pipeline to keep processing the already-read data
even if there is no additional input. A similar transformation
is applied on M3. Deadlock situation does not occur, 1 because
M4 can now receive the output from M3.

1Alternative solutions for deadlock avoidance are presented in [19], but
they require modification to the HLS scheduling, allocation, and binding
kernels. Deadlock can also be avoided by increasing the buffer size [31]
(AOCL has this functionality). However, since the efficiency of the solution
for avoiding deadlock is not the focus of this work, we apply a solution that
only requires simple source-to-source transformation of the loops without an
elaborate analysis of the whole circuit. This method cannot be used to resolve
all deadlocks—such as the one that is caused by circular wait.

C. Feedback Problem

As mentioned previously, the VHLS software simulator
evaluates functions in the order they are instantiated in the
source code. This causes a problem if there is a feedback
path that passes data from later instantiated functions to earlier
ones. At the time earlier functions are simulated, the data is
not be available. As a result, VHLS simulates the program
as if the FIFOs in the feedback path are always empty. We
will refer to this issue as a feedback problem. The feedback
problem occurs when the content of a FIFO buffer in the HSS
does not match that in the RTL simulation at the cycle a read
operation is performed on a FIFO in a feedback path. This
happens when FIFO writes before each read is not correctly
simulated. An example of the feedback problem in the case
of matrix multiplication can be found in [22]. The AOCL tool
can simulate the feedback data from a blocking read correctly
because a thread simulating each module can wait for others to
pass the data. However, it is not guaranteed that the feedback
data from a non-blocking read will arrive at the right timing.

D. Performance Estimation Problem

Performance estimation problem is defined as providing
incorrect estimation of the module execution time. VHLS
synthesis report has a performance estimation problem for
applications with data-dependent loop bounds, conditional
statements, or stalls [32], and almost all benchmarks used for
the experiment have such properties (details in Section IX-C).
AOCL synthesis report and VHLS/AOCL software simulators
do not provide any performance estimation at all.

IV. PROBLEM STATEMENT AND CHALLENGES

Before we provide the problem statement, we will define
the concept of FIFO communication cycle-accurate (FCCA)
simulation. The FIFO communication refers to the FIFO-
accessing expressions in the source code (listed in the second
column of Table II). A FIFO communication statement refers
to a statement with a FIFO communication. Let us assume
that a FIFO communication has been evaluated in HSS at
cycle t. We declare that the FIFO communication is simulated
cycle-accurately if the FIFO input value and the FIFO output
value of the FIFO APIs (FAPIs) in the HSS match the FIFO
input ports (din, rd_en, wr_en) and the FIFO output ports
(dout, empty, full) [33] in RTL simulation at the same
cycle t. That is, the C variables and the RTL signals have the
same value as described in the third column of Table II at
the same cycle t. The FIFO input value of the FAPIs refers
to the value of “wdata”, and the FIFO output value of the
FAPIs refers to the value of “test” and “rdata” in Table II.
If all FIFO communication in a C source code is simulated
cycle-accurately in HSS, the simulation will be FCCA.

For example, the non-blocking read expression, “test =
fifo.read_nb(rdata)”, is cycle-accurately simulated if the
value of “rdata” matches dout and “test” has the toggled
value of empty at the same cycle as the RTL simulation.

We assume that we simulate an HLS design that is com-
posed of multiple finite-state machine (FSM) modules (in-
ferred from C functions). The modules execute concurrently

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 5

TABLE II
THE FIFO COMMUNICATION IN THE C SOURCE CODE, THE CORRESPONDING FIFO IP RTL PORTS AND C VARIABLES, AND THE CORRESPONDING

FLASH SIMULATION CODE (VHLS FIFO APIS [2] AND FIFO IP RTL PORTS [33] ARE IN MONOSPACE FONT)

Description FIFO comm in source code RTL ports & C variables FLASH simulation code
Blocking read rdata = fifo.read() 1 == !empty, rd_en = 1, rdata = dout (stall cond: fifo rnum==0), test = (..rnum!=0),
Non-blocking read test = fifo.read_nb(rdata) test = !rd_en = !empty, rdata = dout rdata = fifo arr[fifo rptr++]; fifo rnum−−;
Blocking write fifo.write(wdata) 1 == !full, wr_en = 1, din = wdata (stall cond: fifo wnum==0), test = (..wnum!=0),
Non-blocking write test = fifo.write_nb(wdata) test = !wr_en = !full, din = wdata fifo arr[fifo wptr++] = wdata; fifo wnum−−;
Empty test = fifo.empty() test = empty test = (fifo rnum == 0)
Full test = fifo.full() test = full test = (fifo wnum == 0)

(with directive #pragma HLS dataflow) and use stream-
ing FIFOs for inter-module communication.

Our main goal is to construct an HLS software simulator
that is FCCA. The input and output of the simulator is defined
as follows:

Input: (1) An HLS C source code (2) Scheduling informa-
tion (3) Input data of the design

Output: Output data of the design
The scheduling information is defined as the information on

the FSM state transition and the assigned FSM state of FIFO
communication, conditional statements, and loop statements.

FCCA simulator does not have the data ordering, module
latency, feedback, and performance estimation problems that
were described in Section III.

Recall that the data ordering problem occurs when a con-
sumer module MC is reading data in a non-blocking fashion
from multiple producer modules MP through FIFOs and the
order of data processed at MC is not maintained in the HSS.
If the FIFO communication is cycle-accurate, the relative
ordering of FIFO reads and writes matches that of the RTL
simulation. That is, the number of FIFO reads and writes
and the data before each FIFO read match that of the RTL
simulation. Thus, the order of data read from the FIFO at MC

in FCCA simulation matches that of the RTL simulation. The
proof that an FCCA simulator does not have the data ordering
problem is provided in [32].

We have explained that the feedback problem happens with
incorrect simulation of writes before each read operation to a
FIFO in the feedback path. Since the relative ordering of reads
and writes is maintained in an FCCA simulator, the feedback
problem does not take place.

Since all FIFO transactions occur at the same cycle as in
the RTL simulation, the delay between any consecutive pair
of FIFO reads and writes of a module matches that of the
RTL simulation. Thus, the FCCA simulator does not have the
module latency problem.

Let us assume that a simulator can model modules’ FSM
states correctly if stalls caused by empty and full FIFO
signals have been simulated correctly. We also assume that a
module’s execution time is determined by its FSM state (more
explanation on these assumptions in Section V-A2). Since
FCCA simulator models the empty and full signals cycle-
accurately, it estimates the modules’ execution time accurately
and does not have the performance estimation problem.

In addition to the main goal of achieving cycle-accurate
FIFO communication, the simulator should provide the content
of the registers (e.g., the state of a module or the number of

empty FIFO buffers) in a deadlock situation for debugging pur-
poses. Moreover, the simulation code should be semantically
similar to the source code as much as possible (as opposed to
being a low-level code such as RTL), so that users can easily
understand what is being simulated.

With such complicated requirements, several challenges
arise:

• Challenge 1: FCCA simulation
It is difficult to discover the exact cycle when statements
are executed since the information given by the HLS
tool is very limited. For example, The AOCL tool only
provides loop initiation intervals (II). The Vivado HLS
tool provides slightly more information—it provides a list
of LLVM IR and the corresponding state of an FSM. But
mapping such low-level representation (e.g., lines 27–31
of Fig. 6) back to the original C code is a difficult task.
Moreover, the execution cycle may change due to FIFO
being empty or full. Even if the execution cycle is known,
an FCCA simulator needs to selectively simulate a code
region that corresponds to a particular cycle. Furthermore,
the value of variables at a certain cycle must be correctly
supplied to the simulation of the next cycle.

• Challenge 2: Simulation of parallelism
HLS designs have multiple levels of parallelism including
task-level parallelism and pipelined parallelism. Cycle-
accurately simulating parallelism in a C syntax becomes
a difficult task because the value of variables and the
simulation order of the statements become different from
that of the source code. For example, if the statement in
line 21 of Fig. 4 is executed 14 cycles after the statement
in line 20, we would need to simulate line 21 with a
“temp” value that corresponds to iteration i and line 20
with that of iteration i + 14 in a single cycle.

• Challenge 3: Loop and function simulation
We need to construct an equivalent model of high-level
C semantic such as loops and functions.

V. AUTOMATED CODE GENERATION FOR RAPID
CYCLE-ACCURATE SIMULATION

In this section we provide a solution to each challenge in
Section IV and describe our proposed automated simulation
code generation flow. For illustration, we use the toy_mpath
example (Fig. 4) after modifying the source code to avoid the
deadlock as shown in Fig. 5.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 6

01 void M1(stream<int>& f_out1,.. f_out2){
02 for (int i = 0; i < N/16; k++) {
03 for (int j = 0; j < 16; k++) {
04 #pragma HLS pipeline II=1
05 f_out1.write(16*i+j);
06 f_out2.write(16*i+j+10);
07 } } }
08
09 void M2(stream<int> & f_in, ... f_out){
10 for(int i = 0; i < N; i++){
11 #pragma HLS pipeline II=1
12 int data = f_in.read();
13 int temp = data*711;
14 f_out.write(temp);
15 } }
16

M1

M2
(IL=5)

M3
(IL=15)

fifo1

fifo2

M4

fifo3

fifo4

data_out

17 void M3(stream<int>& f_in, ... f_out){
18 for(int i = 0; i < N; i++){
19 #pragma HLS pipeline II=1
20 int temp = f_in.read();
21 f_out.write((int)((float)temp*3));
22 } }
23 // M4 is omitted
24 void toy_mpath(int data_out[N]){
25 stream<int> fifo1,fifo2,fifo3,fifo4;
26 #pragma HLS stream var=fifo1,.. depth=2
27 #pragma HLS dataflow
28 M1(fifo1, fifo2);
29 M2(fifo1, fifo3);
30 M3(fifo2, fifo4);
31 M4(fifo3, fifo4, data_out);
32 }

Fig. 4. Structure and code for motivating example toy_mpath

01 i = 0;
02 while (i < N){
03 #pragma HLS pipeline II=1
04 if(f_in.empty()==false){
05 int data = f_in.read();
06 int temp = data*711;
07 f_out.write(temp);
08 i++;
09 } }

for(i = 0; i < N; i++){
#pragma HLS pipeline II=1
int data = f_in.read();
int temp = data*711;
f_out.write(temp);

}

Fig. 5. Modified code of M2 in Fig. 4 to avoid artificial deadlock

01 ==
02 + Verbose Summary: Schedule
03 ==
04 * Number of FSM states : 7
05 * Pipeline : 1
06 Pipeline-a : II = 1J D - 5J States - { 2 3 4 5 6 }
07 * Dataflow Pipeline: 0
08
09 * FSM state transitions:
10 1 -->
11
12 2 -->
13
14
15 3 -->
16
17 4 -->
18
19 5 -->
20
21 6 -->
22
23 7 -->
24

2 I true

7 I (!tmp)
3 I (tmp)

4 I true

5 I true

6 I true

2 I true

25 * FSM state operations:
26
27 State 6 <SV- 5> <Delay- 1.75>
28 ... Operation 27 ... --->"call void(...)* @_ssdm_op_Spec
29 ... Operation 28 ... ---> "call void @_ssdm_op_Write
.ap_fifo.volatile.i32P(i32* %f_out_VJ i32 %temp)"
30 ... Operation 29 ... ---> "br label %._crit_edge .. .
31 ... Operation 30 ... ---> "%empty_40 =call i32 .. .

Fig. 6. VHLS scheduling report for M2 of Fig. 5

01 void M2_SIM(){ //simulation function for M2
02 static int M2_state = 1;//use “static” var for the next cycle
03 ...
04 if(M2_state == 1){ //state conditional block for state 1
05 ... //computation stmt & communication for state 1
06 M2_state = 2; //state transition for state 1
07 }
08 else if(M2_state == 2){ //state conditional block for state 2
09 ... //computation stmt & communication for state 2
10 M2_state = 7; //state transition for state 2
11 }
12 } //exit sim function after simulating one cycle

Fig. 7. Simulation function structure for selective simulation of an FSM state
(M2 SIM is simulated at line 9 of Fig. 9)

01 static bool p1_en_st3, ... p1_en_st6 =false; //enable signals
02 static int temp_st3, ... temp_st6; //6 //pipelined variables
03 ...
04 else if(M2_state == 2){ //starting state for the pipelined loop
05 if(p1_en_st6 && fifo3_wnum==0){ //if stalled due to FIF03 full
06 return; //exit without any changes (see Sect S.A.4)
07
08
09
10
11
12
13
14
15
16
17
18

}
• • •
if(p1_en_st6 == true){

p1_en_st6 = false;
fifo3_arr[fifo3_wptr++]
fifo3_wnum--;

//enabled 4 cycles after FIFO read
//disables enable signal after use

= temp_st6; //7 //FIFO data write
//(see Sect S.A.3)

}
• • •

if(p1_en_st3 == true){
p1_en_st3 = false;
p1_en_st4 = true;
temp_st4 = temp_st3;

//enabled 1 cycle after FIFO read
//disables enable signal after use

//enable signal propagation
//copies variable for next pipe stage

19 }
20 if(i_st2 < N){ //2 //loop exit condition (see Sect s.c)
21 if(fifo1_rnum != 0){ //4 //if FIFO not empty
22 data_st2 = fifo1_arr[fifo1_rptr++]; //5 //FIFO data read
23 fifo1_rnum--; //(see Sect 5.A.3)
24 temp_st2 = data_st2 * 711; //6 II comp stmt mapped to st2
25 i_st2++; //8 // loop iterator update (see Sect 5.C)
26 p1_en_st3 =true; //enables if path for later pipe stages
27 temp_st3 = temp_st2; //copies variable for next pipe stage
28 ••• } } }

Fig. 8. Simulation code that models pipelined loop parallelism for M2 of
Fig. 5 (provides details for line 9 of Fig. 7)

01 void (*MList[M])(); //module func ptr list
02 void (*FList[F])(); //FIFO func ptr list
03 Mlist[0] = M1_SIM; Mlist[3] = M4_SIM; //init
04 Flist[0] = F1_SIM; Flist[3] = F4_SIM;
05
06 while(1){ //scheduler loop
07 ... // loop until until deadlock or all modules finish
08 for(x = 0; x < M; x++) //simulate all modules
09 Mlist[x]();
10 for(p = 0; p < F; p++) //simulate all FIFOs
11 Flist[p]();
12 ...
13 cycle++;
14 }

Fig. 9. Module/FIFO simulation scheduler to model task-level parallelism

A. FIFO Communication Cycle-Accurate Simulation

We will describe the properties of FLASH and the corre-
sponding code transformation. Based on these properties, we
will explain how FLASH achieves FIFO communication cycle-
accurate (FCCA) simulation.

1) Matching Simulated State of Statements: Let us assume
that HLS tool schedules a FIFO communication of a C source
code to be executed at a particular FSM state (st) of a module.
FLASH simulates the FIFO communication at the same st
scheduled by the HLS tool. In order to achieve this, we
first need to obtain the HLS scheduling information of the
FIFO communication. This is found from parsing FIFO-related
keywords in the scheduling report. For example, the state when
FIFO “f out” performs the write operation (line 7 of Fig. 5)
is found to be 6, because op_Write.ap_fifo and “f out”
keywords are detected in line 29 of Fig. 6. Similarly, the FIFO
read statement (line 5 of Fig. 5) is assigned to state 2 from
the scheduling report (not shown in the figure).

Next, we need to ensure that only the FIFO communica-
tion statements assigned to each FSM state are selectively
simulated at every cycle. We declare an FSM state variable
(line 2 of Fig. 7) for each module and copy statements to

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 7

the conditional block that correspond to its simulated state
(state conditional block). An example can be found for the M2
module in lines 4–7 (st = 1) and lines 8–11 (st = 2) of Fig. 7.
After the simulation function of a module has been called, only
the statements for a single FSM state are simulated, and then
the function exits. That is, a single clock event is simulated
by a function entrance and exit.

Since FLASH aims for cycle-accuracy of FIFO communica-
tion, the computation statements do not need to be evaluated
cycle-accurately. For computation statements, we can assign
an arbitrary state as long as it does not violate the timing
causality with the cycle-known FIFO communication that has
dependency with the computation statement. We group the
computation statements to a few FSM states as much as
possible; if the statements are spread among multiple FSM
states, the variables shared across the states may need to be
stored in cache or DRAM and loaded back after function exit
and entrance. This is inefficient if the variable has a short life
and could have been optimized to a CPU register.

For example, the computation statement in line 6 of Fig. 5
has a dependency with both the FIFO read and the FIFO write
statements. It may be assigned to any state between 2 and 6
without violating the time causality, but to reduce the number
of FSM states with statements, it should be assigned to either
2 or 6. We choose to assign it to state 2, following the as-
soon-as-possible scheduling policy, as it tends to reduce the
number of variables being passed between the states.

2) Cycle-Accurate FSM State: FLASH cycle-accurately
simulates the FSM state of a module at t (stt). By induction,
stt is cycle-accurate if the initial state at t = 1 is known
(stt=1 = 1) and the state transition ∆t matches the RTL
simulation at 1, 2, ..., t-1. ∆t matches the RTL simulation
if the state transition information can be obtained from the
HLS tool report and a state transition statement that reflects
this information is evaluated at t. Also, ∆t should be stalled if
empty or full signals have been asserted when the blocking
reads or writes have been evaluated.

VHLS provides the state transition information in its
scheduling report. For example, the loop in module M2 in
Fig. 4 is evaluated in states 2 to 6, as shown in line 6 of
Fig. 6. The state transition of the loop is composed of intra-
loop state transition (e.g., state 2 to 3, as shown in line 14 of
Fig. 6) and loop exit (e.g., state 2 to 7, as shown in line 13).
FLASH obtains this information and inserts the state transition
statement into the simulation code. For example, line 10 of
Fig. 7 reflects the loop exit state transition from state 2 to 7.
The method used by FLASH to correctly simulate the state
transition stalls will be discussed in Section V-A4.

VHLS schedules a module to start and finish its execution
at a particular FSM state. Since FLASH cycle-accurately
simulates the FSM state of a module, the estimation of a
module’s execution time is cycle-accurate.

3) FIFO Behavior Modeling: In the FLASH simulation
code, the FIFO is implemented as a circular buffer with
read/write pointers (fifo rptr and fifo wptr) and an array
(fifo arr). The array length is set to FIFO buffer size
(FIFO SIZE) plus one because one buffer space is kept
empty in circular buffer implementation [34]. Also, we declare

fifo rnum and fifo wnum variables to denote the number
of data and buffer spaces available in the FIFO. FAPIs in
the source code are transformed based on the fourth column
of Table II. An example is shown in Fig. 8, which is the
transformed simulation code from M2 in Fig. 5. Line 7 of
Fig. 5 is transformed to: “fifo3 arr[fifo3 wptr++] = temp st6;
fifo3 wnum−−;” (lines 11-12 of Fig. 8). The code difference
between the blocking and the non-blocking FIFO communi-
cation is that the code for blocking communication is not
simulated if the stall condition is satisfied. This is further
explained in Section V-A4.

In addition to decreasing the number of buffer spaces
(fifo3 wnum−−) for FIFO write, we would need to increase
the number of available data (fifo3 rnum++). But this process
is delayed until all other statements in the current cycle have
been simulated. The reason is to match the Xilinx FIFO IP
behavior [33] of allowing data in FIFO to be available for
read, one cycle after it has been written. The details of this
delayed processing is further provided in Section V-B2.

4) FSM Stall Modeling: FLASH cycle accurately models
the FSM stalls due to FIFO being full or empty. If a stall
condition is met, none of the statements of current FSM
state should be simulated, and the simulation function should
exit. To achieve this, the stall condition is placed at the
beginning of a state conditional block. The simulation code
for the stall condition is “fifo rnum==0” for FIFO empty and
“fifo wnum==0” for FIFO full (Table II). These codes are
also used for the stall conditions of the blocking reads and
writes. For example, the stall condition that corresponds to the
FIFO blocking write in line 7 of Fig. 5 is “if(p1 en st6 &&
fifo3 wnum==0)”. This condition has been added to line 5 of
Fig. 8. Also, the function return statement has been added to
line 6 of Fig. 8. Note that we add an enable signal “p1 en st6”
to the stall condition of a pipelined loop because the FIFO
write occurs at FSM state 6 (more details in Section V-B1).

FLASH can detect a deadlock by checking if a state
transition did not occur (stalled) in all modules. It is enabled
by the source-level trigger directive that is explained in Sec-
tion VIII-B.

It is worth noting that applying the classic event-driven
simulation approach (e.g., [35]) makes little difference in
the simulation speed of FLASH. The reason is that the stall
condition is placed at the beginning of a state conditional block
and prevents most of the statements from being evaluated
when a module is stalled. That is, there is little overhead in
processing a module without an event that requires simulation,
and this diminishes the benefit of applying the event-driven
approach.

5) Correctness of the Variable Reference: As explained in
Section V-A1, all statements that have dependency with cstmt
have been evaluated before the simulation of cstmt. The value
of variables written by statements with the same st as cstmt is
correctly supplied to cstmt because they are simulated in the
same state conditional block. A problem occurs when reading
variables written by statements with FSM states other than st
because the simulation function exits after each cycle. This
problem is solved using the static keyword in variable
declaration (e.g., line 2 of Fig. 7 and line 2 of Fig. 8). By

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 8

using this technique, the contents of the variables are restored
and saved regardless of the simulation function entrance or
exit.

6) Proof of FCCA Simulation: We can prove that FLASH is
an FCCA simulator by demonstrating that the FIFO input and
output values of the FAPIs in the FLASH simulation match the
values of FIFO input and output ports in the RTL simulation
at all clock cycles. Due to the space limitation, only a brief
explanation of the proof will be provided—the details can be
found in [32].

In FLASH, cstmt is simulated at the same cycle t as the
RTL simulation because the simulated st of cstmt matches
the HLS tool (Section V-A1) and st is simulated cycle-
accurately (Section V-A2 and Section V-A4). cstmt produces
the correct value for the FIFO input value of the FAPIs if
FLASH supplies the variables referenced by cstmt (achieved
by Section V-A5) and the FIFO output value of the FAPIs that
match the RTL simulation. Correct FIFO output values of the
FAPIs can be supplied at cycle t with accurate FIFO behavior
modeling (Section V-A3) and the FIFO input value of FAPIs
that matches the RTL simulation at cycle 1, 2, ... t− 1. Then
we can prove that FLASH is an FCCA simulator by induction.

B. Simulation of Parallelism
1) Pipelined Parallelism: At each cycle, all statements in a

pipelined loop should be simulated in a pipelined parallelism
fashion. The number of FSM states to be simulated corre-
sponds to the loop iteration latency (IL, also called pipeline
depth). If we simulate only a particular FSM state conditional
block of a pipelined loop, it would not be possible simulate
this parallelism.

To solve this problem, we would need to simulate all FSM
states of a pipelined loop. It is possible to make an exception
to the simulation structure by traversing through multiple state
conditional blocks in a single cycle for pipelined loops; but this
would over-complicate the simulation structure. For a simpler
solution, we choose to move all of the pipelined loop’s state
conditional blocks into the conditional block of a single state.
The reallocated conditional blocks are referred to as pipeline
stage conditional blocks. As shown in Fig. 8, the contents of
FSM states 2, 3, and 6 have been moved to pipeline stage
conditional blocks in lines 20-28, lines 15-19, and lines 9-13.

If a pipelined loop L’s II (IIL) is larger than 1, FLASH
makes IIL state conditional blocks for this loop. In this case,
the pipeline stage conditional blocks for state st are placed at
state (stL + ((st− stL)%IIL)) conditional block, where stL
is L’s first FSM state.

We introduce enable signal to decide if the statements inside
each pipeline stage conditional block will be evaluated. For
example, the FIFO write at lines 11-12 of Fig. 8 is evaluated
if the enable signal “p1 en st6” at line 9 is one. Using an
enable signal allow us to selectively simulate statements in a
pipelined loop’s prologue/epilogue and invalidate statements
in a pipeline bubble (from the artificial deadlock avoidance
transformation in Section III-B). The enable signal is also
used to selectively simulate statements of a conditional block.
The value of enable signals is propagated through the pipeline
stages as shown in line 17.

It is important to note that the order of each pipeline stage
conditional block has been reversed (st6, ... st3, st2). This
limits the value of enable signals to be copied only to the
immediate next pipeline stage in simulation of a single cycle.

Even if a same variable is used in different statements of
the original source code, we cannot assume that they have the
same value if they have been assigned to different pipeline
stage conditional blocks. For example, suppose that line 6 of
Fig. 5 is performed at FSM state 2, and line 7 is performed at
state 6. In a single cycle of the pipelined loop simulation,
“temp” of line 7 corresponds to loop iteration i, whereas
“temp” of line 6 corresponds to loop iteration i+4. Thus, they
would have different values.

For correct simulation, we keep multiple copies of the same
variable for each pipelined stage of a loop. The variables are
copied through the pipeline like shift registers. For example,
the “temp” variable is copied from loop pipeline stage 3 to
stage 4 at line 18 of Fig. 8. Variables “data” and “i” are
not copied to the next pipelined stage after performing cycle-
based variable liveness analysis (explained in Section VI-A).
Similar to the enable signals, the content of pipelined variables
is only copied to the immediate next state in a single cycle
since the order of the pipeline stage conditional block has been
reversed. Optimization of the pipelined variables is discussed
in Section VI.

Because of the duplicated pipelined variables, the read-
ability of the simulation code can be reduced. In order to
diminish this side effect, FLASH places the line number
of the original variable declaration in the source code as a
comment of the duplicated pipelined variable declaration in the
simulation code. For example, the line number 6 of the variable
declaration of “temp” in Fig. 5 is written as a comment
of the duplicated pipelined variable declaration in line 2 of
Fig. 8. The original line numbers of the computation and
communication statements are also placed at the comments
of the simulation statements (e.g., lines 20-25 of Fig. 8).

2) Task-Level Parallelism: As discussed in Section V-A1,
the statements in an FSM state are simulated by calling
the simulation function of a module. Thus, the task-level
parallelism can be simulated by calling all simulation functions
in a round-robin fashion. This is processed in the module
simulation loop shown in lines 8-9 of Fig. 9.

As mentioned in Section V-A3, the update of the buffer
spaces and the number of available data is delayed until all
modules in the current cycle have been simulated. The update
(corresponding code is presented in [32]) is performed in the
FIFO simulation loop (lines 10-11 of Fig. 9).

The module simulation loop and the FIFO simulation loop
form the scheduler loop as shown in lines 6-14 of Fig. 9.

C. Loop and Function Simulation

The loop initialization statement of loop L is simulated upon
initial entrance to L’s first FSM state (stL). If L is a pipelined
loop, the enable signal is set to 0 at stL (Section V-B1) when
L’s loop iterator of a new iteration does not satisfy the loop
condition. Since the loop condition for an iteration should be
checked after the loop update statement has been evaluated,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 9

the loop update is evaluated just before transitioning into stL.
Recall that L has a number of state conditional blocks that
matches II (IIL) of the loop (Section V-B1)—thus, the loop
update (e.g., line 8 of Fig. 5) is evaluated at the end of (stL +
IIL − 1).

Since the loop update is evaluated before the final state
of a loop, a dependency problem may occur. For example,
suppose that we add a statement between line 7 and line 8
of Fig. 5 that is dependent on line 7 and references i. The
loop index update statement in line 8 is scheduled to state 2
(∵ stL = 2, IIL = 1). Assuming line 7 is scheduled to state 6
from the scheduling report, the new statement between lines 7
and 8 incorrectly references i that has already been updated to
the next iteration. This is solved by copying i to a temporary
variable before evaluating the loop index update statement and
renaming any reference of i that has the dependency problem
to this temporary variable.

The state transition for pipelined loop exit occurs when the
loop condition is not satisfied and all enable signals in the
pipeline have been invalidated. Simulation of statements inside
a pipelined loop has been discussed in Section V-B1. The code
transformation method of a flattened loop can be found in [22].

A function call is simulated by sending a module enable
signal to the scheduler loop (Fig. 9). Next, the function
argument values are copied into the newly called module.

VI. OPTIMIZATION OF PIPELINED LOOPS SIMULATION

Pipelined loops typically account for most of the execution
time of many FPGA designs. To simulate pipelined paral-
lelism, we need copies of variables that correspond to the
loop’s IL (Section V-B1). However, a naive implementation
could lead to making redundant copies of the variables. This
section discusses how to optimize this routine. The effect of
the optimization will be presented in Section IX-B.

A. Cycle-Based Variable Liveness Analysis

The pipelined variables are only needed in the pipeline
stages where the variables are being accessed. To ensure
this, we first perform variable liveness analysis [36] to find
the range of statements where each pipelined variable is
alive. Next, the FSM state of communication statements and
the computation statements are obtained from the scheduling
report and the dependency analysis. From the FSM state
information of statements, the statement liveness range of each
variable is translated into a cycle liveness range. Based on
this cycle information, we place a limit on the pipeline stages
where each pipelined variable is copied.

For the example in M2 of toy_mpath (Fig. 5), we perform
liveness analysis on each variable and find that variable “data”
is live in lines 5–6, variable “i” in line 8, and variable “temp”
in lines 6–7. Then we assign the states for communication
and computation statements in M2 of toy_mpath as was
shown in Section V-A1. That is, statements in lines 5, 6,
and 8 of Fig. 5 are assigned state 2, and the statement in
line 7 is assigned state 6. Based on this information, the
statement liveness range is converted into a cycle liveness
range—variables “data” and “i” are live at cycle 2 and variable

01 static bool p1_en[5];
02 static int temp[5]; //6
03 static int ptr_st2 = 4, ptr_st6 - 0;
04 ...
05 else if(M2_state == 2){
06 ...
07 if(p1_en[ptr_st6] ==true){

//enable signal array
//pipelined variable array

//pipe variable pointers

08 p1_en[ptr_st6] =false; //disables enable signal after use
09 fifo3_arr[fifo3_wptr++] - temp[ptr_st6]; //7 //read from
10 //pipelined variable array
11 fifo3_wnum--;
12 }
13 //conditional blocks for pipeline stages 3, 4, 5 are removed
14
15 if(i_st2 < N){ //2
16 if(fifo1_rnum != 0){ //4
17 p1_en[ptr_st2] =true; //enables later pipeline stages
18 data_st2 = fifo1_arr[fifo1_rptr++]; //5
19 fifo1_rnum--;
20 temp[ptr_st2] = data_st2*711; //6 //written to
21 //pipelined variable array
22 i_st2++; //8
23 } }
24 ptr_st2 - (ptr_st2 + 1) % 5;
25 ptr_st6 - (ptr_st6 + 1) % 5;
26 } }

II pipelined variable
II pointers update

Fig. 10. The code after applying pointer-based variable access optimization
to the initial code provided in Fig. 8

“temp” from cycles 2 to 6. As a result, only variable “temp”
is copied through the pipeline stages.

B. Pointer-Based Variable Access

One of the problems of declaring a pipelined variable for
each pipeline stage (as in Fig. 8) is that the same value is
copied repeatedly. Assuming a pipelined loop has I iterations,
V variables, and IL iteration latency, the complexity of copy-
ing pipelined variables is O(I×V×IL).

We propose an alternative method of copying the value of
a pipelined variable only once and changing the pointer to
the pipelined variable. The modification to the initial code
(Fig. 8) is shown in Fig. 10. We first exploit the fact that the
value of the pipelined variable is used in the immediate next
pipeline stage—thus, the pipeline variable pointer for stage st
(ptrst) update can be simplified into (ptrst+1)%IL (lines 24–
25). Next, the pipeline variable pointer is shared among all
variables and enable signals in the same pipeline stage since
all variables and enable signals are copied together to the next
pipeline stage if the loop pipeline has not been stalled. An
example is shown for the “temp” variable (line 20) and the
“p1 en” enable signal (line 17). Note that this optimization
has not been applied to variables “i” and “data”, because “i”
and “data” are only used in pipeline stage 2 (Section VI-A).
Finally, we remove the pipeline stage conditional blocks that
do not evaluate any statement (line 13—pipeline stages 3, 4,
and 5 are removed), because variables and enable signals no
longer need to be copied.

The variable access pattern has a similarity with the register
rotation technique in IA-64 architecture [37]. Whereas IA-
64 used this technique to simplify the register allocation in
software pipelining, we use the access pattern to reduce the
number of variable copies among the simulated statements.

Since the data is copied only once, the complexity of the
pipelined variable copy is O(I×V). The pipelined variable
pointers are shared among all variables in the same pipeline

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 10

TABLE III
DEBUG DIRECTIVES FOR FLASH

Syntax Description Target

Trigger-related

DEADLOCK Triggered at deadlock Module with dataflow pragma
STALL Triggered when module or loop has been stalled Any module or loop
MODULE DONE Triggered when a module completes its execution Any module
FIFO FULL FIFO=<name> Triggered at FIFO full condition Any FIFO
FIFO EMPTY FIFO=<name> Triggered at FIFO empty condition Any FIFO
EQUAL VAR=<name> VAL=<val> Triggered when variable equals to value provided Any stmt with a variable reference
GREATER VAR=<name> VAL=<..> Triggered when variable is greater than value provided Any stmt with a variable reference

Data-related DUMP VAR=<name> FILE=<name> Dumps variable data into the specified file Any stmt with a variable reference
COMP VAR=<name> FILE=<name> Triggered when variable differs from golden data in file Any stmt with a variable reference

Perf-related

TRIP COUNT Measures the loop trip count (e.g. for data-dependent loop) Any loop
EXEC CYCLE Measures the number of execution cycles for module or loop Any module or loop
STALL CYCLE Measures the number of stalled cycles for module or loop Any module or loop
FULL CYCLE Measures the number of cycles when FIFO was full Any FIFO
EMPTY CYCLE Measures the number of cycles when FIFO was empty Any FIFO

Input

Prepro‐
cessing

(w/ ROSE)

Vivado HLS
synthesis

Automated
sim file

generation
(w/ ROSE)

FCCA sim using
Vivado HLS SW sim

Perf +
debugging
result Output

Scheduling info

Transformed
code for
simulation

Vivado HLS
C design

source code

User’s
debugging
directives

Output
data

Fig. 11. Overall simulation framework of FLASH

stage—thus, the complexity of the pointer update appears to
be O(I×IL). However, as mentioned in Section V-A1, we
group statements to only a few FSM states. The pointer update
is not performed on pipeline stages that do not evaluate any
statement (e.g., lines 24-25). Assuming there are C stages
with communication statements (C�IL), the pointer update
complexity is O(I×C). Thus, the overall pipeline variable
complexity of the proposed method is O(I×(V+C)), which
is a large improvement over O(I×V×IL).

VII. OVERALL FLOW

The overall simulation framework of FLASH is shown
in Fig. 11. Given an input Vivado HLS (VHLS) C design
source code, users specify optional debugging directives such
as module execution cycle measurement or deadlock triggering
(to be explained in Section VIII-B). Then FLASH performs
a preprocessing step of adding labels to the source code
so that loops and functions can be easily identified. The
transformation step uses the APIs in the ROSE [38] and the
Merlin [39] compilers. The transformed code is fed into the
VHLS for synthesis. Based on the scheduling report given
by the HLS tool, the input code is automatically transformed
for rapid FCCA simulation (Section V and Section VI). The
simulation code has been made compatible with the VHLS
software simulator for easy integration with the existing tool.
It also allows us to utilize the VHLS’s debugging functionality
for FLASH’s debugging features (details in Section VIII-A).
As a final output, FLASH provides the total execution cycles
and other user-specified debugging results in addition to the
output data that the design is expected to produce.

VIII. SOURCE-LEVEL CORRECTNESS DEBUGGING AND
PERFORMANCE DEBUGGING

FLASH provides an option of enabling various source-level
correctness and performance debugging features that will be
explained in this section.

A. Live Capture
FPGA tools such as Xilinx’s ChipScope [40] or Intel’s

SignalTap [41] capture the data in the FPGA and display
it to users for debugging. One of the problems with these
configurable logic analyzers is that additional signals often
need to be inserted into the capture list to continue tracing
the source of a bug after the initial analysis. This requires
iterative adjustment of the signal capture list until the bug has
been isolated—but the bitstream generation for each analysis
often takes hours to finish. Many of the hardware-based
HLS debuggers described in Section II also require a long
turnaround time due to similar reasons.

Software debuggers, on the other hand, do not require
signals to be listed in advance. But due to the lack of cycle
accuracy, putting a trigger (breakpoint) on a C source code
does not allow the users to observe the signals at a particular
cycle of interest. Another problem is that users have limited
visibility. For example, local variables in a function different
from the trigger cannot be observed unless the user progresses
to that function—by which time the content of many variables
would have been changed.

To solve these problems, we exploit the fact that FLASH
stores the value of all variables (Section V-A5) and the fact that
FLASH runs on top of an established commercial tool, VHLS,
that provides software simulation debugging features. Upon
detection of a trigger condition (details in Section VIII-B),
FLASH sets a debug stall flag. All modules are stalled upon
the detection of this flag (implementation is similar to the
pipelined loop stall modeling in Section V-A4—see step 2
line 1 of Fig. 12). When the simulation has been stalled
for debugging, users can step into any function and observe
any local variables of interest by adding a new variable into
the VHLS debugger’s expression window (this is similar to
the watch window of Microsoft Visual Studio—see step 4 of
Fig. 12). The variables to be captured no longer need to be
predetermined.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 11

<source code>
void toy_mpath(.. .){

Step 1: User places #pragma HLS dataflow
source-level directive -t1#pragma FLASH-DEADLOCKI ------------for trigger condition Ml () ; M2 () ; M3 () ;

} •

Step 4: User can step into any function and observe the value of any variable with the Vivado HLS debugger
(but no progress made on simulation because all modules are stalled)

()- Variables 00 Breakpoint ',', Registers I Gtf Expressio~ ~ -' Modules .,
1: tt- r x~ rrj ·

~-~--------~--- ---Expresston Type

(x)= test_HLSSIM_SFOOO_IOOO_fifol_RNUM I int I 0

(x): test_HLSSIM_SFOOO_IOOO_fifol_RPTR I int j l I
(x)= HLSSIM_P002_EN004 I char 1 1 '\001' 1
(x)= HLSSIM_V003_temp_OOS I int I 711 1
(x)= HLSSIM_V002_data_002 I int j 3 I
(x): state_HLSSIM ~ int j 2 I

L --------------~---~--~ Add new e xpreSSJ·on ~ ~

Step 5: User may resume simulation
by resetting debug_stall_flag to 0 in
the HLS debugger '

'
(..c)= Variables 00 Breakpoint 1

1
1

, Registers Grf Expression '£:3

Expression

(x)= cycle

(x)= debug_stall_mod_cnt

Add new expression

' ·t -ot: - r

Modules

~ f [

Fig. 12. An example debugging session for deadlock detection using FLASH

The users can expect variables in the FIFO communication
and the FSM state variables to match the RTL simulation at all
cycles (Section V-A). However, the timing when the variables
in the computation statements match the RTL simulation may
not be accurate.

In order to pause at the trigger point, FLASH guides the
users to place a breakpoint on the simulation code where the
debug stall flag is set (step 3 of Fig. 12). The breakpoint is
detected by the VHLS debugger. To resume the simulation
after observation, the user can modify the value of the debug
stall flag to 0 using the expression window (step 5).

B. Source-Level Event Trigger and Performance Measurement

In the Xilinx Chipscope [40], users are required to specify
signal names and their value for the tool to start capturing the
data (trigger condition). Since the HLS tool applies several
transformations in generating RTL file from a C source code,
manually identifying the correct trigger condition from an RTL
file may be error-prone for novice users. To ease this process,
many hardware-based HLS debuggers [11]–[15], [17] allow
users to specify variables to be traced or put breakpoints on
the source code; however, none of these abstract the trigger
condition of events such as deadlock or module/FIFO stall.

FLASH provides a set of source-level directives which can
be specified by users to halt computation upon an event of
interest. The list is given in the trigger-related row of Table III.
The directive is always preceded by: #pragma FLASH
<syntax>. For example, the deadlock detection directive is
#pragma FLASH DEADLOCK (step 1 of Fig. 12). FLASH
automatically converts a directive into a stall condition that
increments a debug variable that counts the number of stalled
modules (step 2). For the case of M2 in Fig. 4, it is stalled if
the FIFO is full (line 4 of step 2). If the directive for deadlock
detection is found in the source code, FLASH inserts a code
that increments the debug variable “debug stall mod cnt”
upon stall (line 5 of step 2). After simulating each cycle,
FLASH checks to see if “debug stall mod cnt” matches the
number of all modules in the design. If so, FLASH sets the
debug stall flag that pauses the simulation (Section VIII-A).

FLASH also supports directive-based performance measure-
ment. The list is given in the performance-related row of

Table III. The functionality includes module execution and
stall cycle measurement, as well as FIFO full and empty cycle
measurement.

C. Large Data Debugging

Hardware-based HLS debuggers, such as [11]–[15], [17],
optimize the storage and transfer of variable data in an FPGA
to be analyzed for correctness. However, the amount of traced
data is limited by the BRAM size and the DRAM bandwidth.
Being a software-based debugger, FLASH is not limited by
the FPGA hardware resource restriction when performing
such data-driven debugging—even for multiple variables. Ex-
amples include large data dump and large golden reference
comparison—the user directives for these functions are shown
in the data-related row of Table III.

IX. EXPERIMENTAL RESULTS

A. Experimental Setup

For HLS synthesis, we use the Vivado HLS 2018.2 [2]. For
FPGA, we target Xilinx’s Ultrascale KU060 [42]. The target
clock frequency is 250MHz. The simulation is conducted with
a server node that has an Intel Xeon Processor E5-2680v4 [43]
and 64GB of DRAM. The simulation files have been optimized
by the Vivado HLS software simulator.

The experiment is performed on toy_mpath (Fig. 4) and
several dataflow benchmarks: stencil [30], molecular dynamics
simulation [18] (Fig. 1), matrix multiplication [44], Cholesky
decomposition [45], Needle-Wunsch [46], LU decomposition
[47], and sparse matrix-vector multiplication [48]. The bench-
marks ([46], [47]) that were not originally designed to execute
modules in parallel with FIFO communication have been
modified to incorporate this dataflow optimization.

The FLASH simulation result is compared to that of Vivado
HLS C and RTL simulation (Verilog), and Verilator 4.012
simulation [29]. Since Vivado HLS RTL files contain core
library calls that cannot be processed by Verilator, we have
manually replaced them with a behavioral Verilog model.

B. Simulation Time

As mentioned in Section VII, preprocessing, HLS synthesis,
and simulation file generation steps are needed to prepare the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 12

TABLE IV
SIMULATION PREPARATION TIME BREAKDOWN

Benchmark Preproc HLS Synth SimFile Gen Total
Toy_mpath 7.6s 25s 7.9s 40s
Stencil 19s 68s 30s 117s
MD_sim 9.2s 38s 8.8s 56s
Mat_mul 8.7s 36s 12s 57s
Cholesky 15s 98s 37s 150s

NW 18s 99s 26s 143s
LUD 7.1s 21s 8.9s 37s
SpMV 13s 78s 25s 116s

TABLE V
SPEEDUP AFTER APPLYING OPTIMIZATIONS IN SECTION VI (CUMULATIVE

SPEEDUP SHOWN)

Benchmark Avg pipe Baseline Var liveness Ptr var acc
var depth (Section VI-A) (Section VI-B)

Toy_mpath 5.4 0.522s 0.483s 0.441s
(1.00X) (1.08X) (1.18X)

Stencil 13 2.43s 1.16s 1.12s
(1.00X) (2.09X) (2.17X)

MD_sim 34 0.184s 0.0728s 0.0565s
(1.00X) (2.53X) (3.26X)

Mat_mul 7.8 0.0802s 0.0722s 0.0716s
(1.00X) (1.11X) (1.12X)

Cholesky 8.7 0.0617s 0.0600s 0.0530s
(1.00X) (1.03X) (1.16X)

NW 3.2 0.236s 0.224s 0.224s
(1.00X) (1.05X) (1.05X)

LUD 19 0.0345s 0.0266s 0.0242s
(1.00X) (1.30X) (1.43X)

SpMV 10 0.0853s 0.0808s 0.0803s
(1.00X) (1.06X) (1.06X)

AVG - (1.00X) (1.41X) (1.55X)

files for the proposed simulation. The time breakdown of the
steps is presented in Table IV.

The effect of optimizations in Section VI is shown in
Table V. The baseline version uses the techniques introduced
in our earlier publication [22] and does not have cycle-based
variable liveness analysis (Section VI-A) and pointer-based
variable access (Section VI-B) optimizations. The table shows
that the proposed optimizations result in 1.55X speedup on
average. The speedup is greater for benchmarks that have a
large (>12) averaged pipeline depth among all variables. The
average speedup for Stencil, MD_sim, LUD is 2.28X, and
the averaged speedup for the rest of the benchmarks is 1.12X.
This is because the proposed optimizations reduce copies of
the variables in loop pipelines.

As explained in Section V-A, FLASH uses the FSM state
assignment information and the FSM state transition infor-
mation. The resource allocation / binding information and
the component library that exist in RTL code have been
abstracted in FLASH, and the computation statements are
instead simulated natively on the host machine. The result
of this abstraction can be checked in Table VI. FLASH is
about 1,630X (=2,800/1.72) faster than the RTL simulation.
This confirms our initial speculation that simulating based on
the scheduling information greatly accelerates the simulation
speed while solving the correctness problems.

Since our flow reflects the scheduling information, we can
expect some slowdown compared to the VHLS C simulation.
The source of overhead includes the frequent FIFO stalls and

TABLE VI
SIMULATION TIME COMPARISON AMONG VHLS C SIMULATION, VHLS

RTL SIMULATION, VERILATOR, AND FLASH SIMULATION

Benchmark VHLS VHLS Verilator FLASHC Sim RTL Sim

Toy_mpath
0.765s 519s 120s 0.441s
(1.00X) (678X) (157X) (0.576X)

Stencil
1.92s 101s 119s 1.12s

(1.00X) (52.6X) (62.0X) (0.583X)

MD_sim
0.0652s 89s 7.3s 0.0565s
(1.00X) (1,370X) (112X) (0.867X)

Mat_mul
0.0680s 180s 29.2s 0.0716s
(1.00X) (2,650X) (429X) (1.05X)

Cholesky
0.0124s 90s 27.7s 0.0530s
(1.00X) (7,260X) (2,230X) (4.27X)

NW
0.136s 68s 27.1s 0.224s
(1.00X) (500X) (199X) (1.65X)

LUD
0.0319s 129s 16.4s 0.0242s
(1.00X) (4,040X) (514X) (0.759X)

SpMV
0.0200s 117s 55.5s 0.0803s
(1.00X) (5,850X) (2,780X) (4.0X)

AVG (1.00X) (2,800X) (810X) (1.72X)

the copy of pipeline variables and enable signals (this overhead
was reduced by the optimizations in Section VI as was shown
in Table V). However, it is interesting to note in that for some
benchmarks such as Toy_mpath and Stencil, FLASH is
even faster than the VHLS C simulation (Table VI). This
suggests that there is an unexpected factor which has negated
the simulation speed overhead of the proposed flow. We found
that this is largely attributed to the fact that the VHLS C
simulator can allocate an unlimited FIFO buffer (Table I). To
model FIFO, the VHLS C simulator uses the C++ Standard
Template Library (queue.h), which incurs the overhead of
dynamically allocating buffer and copying its content. For
example, the C simulation time of Toy_mpath reduces from
0.765s to 0.128s if we replace FIFO library calls with fixed-
size arrays (array size is set to the number of total FIFO
elements written). The FLASH simulation flow does not have
this problem because the FIFO library calls have been replaced
with array-based communication (Section V-A3). The average
slowdown of FLASH compared to the VHLS C simulation is
1.72X.

Compared to the RTL simulation, Verilator increases the
simulation speed by 3.45X (=2,800X/810X). However, as
mentioned in Section II, the speedup is limited because it is
difficult to completely remove resource allocation and binding
information from the RTL file after they have been added.
FLASH does not have this overhead, and as a result, FLASH
outperforms Verilator by two orders of magnitude while also
achieving the cycle accuracy.

Please note that in our initial research stage, we also
evaluated a similar code transformation flow that produces
a SystemC simulation file. However, the overhead in the
SystemC simulation environment caused a 2-3X slowdown
compared to the proposed C-based flow, which motivated us to
follow the current approach. Despite the slowdown, SystemC-
based approach may be more useful to some tool developers
if compatibility with existing SystemC simulation frameworks
has a higher priority.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 13

TABLE VII
TOTAL EXECUTION CYCLES ESTIMATED BY VHLS SYNTHESIS REPORT

AND FLASH, AND THEIR ERROR RATE COMPARED TO THE
RTL-SIMULATED RESULT

Benchmark RTL sim Viv HLS syn rpt FLASH

Toy_mpath
4,500,010 4,000,019 4,500,010

- (-11%) (0%)

Stencil
524,309 524,299 524,309

- (˜0%) (0%)

MD_sim
12,089 10,524 12,089

- (-13%) (0%)

Mat_mul
330,006 131,075 330,006

- (-60%) (0%)

Cholesky
40,741 34,996 40,741

- (-14%) (0%)

NW
245,725 131,112 245,725

- (-47%) (0%)

LUD
201,260 561,153 201,260

- (180%) (0%)

SpMV
163,859 395M 163,859

- (240K%) (0%)

C. Accuracy

As explained in Section IV, the correctness problem is
solved by simulating FIFO communication in a cycle-accurate
manner. The data value and the data ordering has been verified
by comparing the output of the FLASH simulator with that of
the VHLS RTL simulator.

In Table VII we compare the cycle estimation accuracy
with the VHLS synthesis report after we manuallly specify
the maximum loop bound in the source code. The estimation
error rate is small for Stencil, because [30] has a built-in
mechanism to allocate adequate buffers to avoid FIFO stalls.
For the rest of the benchmarks, we have applied a small (1–
2) FIFO depth (e.g., Fig. 4). This causes the FIFO buffer to
be frequently full and empty and increases execution cycles.
Thus, the HLS synthesis report’s estimate is smaller than
the RTL simulation result. For LUD and SpMV, on the other
hand, the VHLS tool provides a very large overestimate of
the execution cycles. The reason is that these applications
have variable loop bounds, and VHLS generates the cycle
estimate based on the maximum possible loop bounds [24].
FLASH simulates FIFO stalls and loops with variable bounds
in a cycle-accurate fashion, and the estimated execution time
accurately matches that of RTL simulation.

X. CONCLUDING REMARKS

With a new HLS software simulation flow based on the
scheduling information, we were able to solve the correctness
issue and also provide accurate performance estimation. A
cycle-accurate simulation result was obtained three orders of
magnitude faster than from RTL simulation, because the new
simulation flow is not slowed by allocation / binding informa-
tion and component library. We have described an automated
code generation flow that enables this new simulation flow.

We hope that the promising results presented in this work
will motivate the HLS commercial tool industry to provide
additional routines that simulate based on the scheduling in-
formation only. This will substantially decrease the validation
time of the customers who wish to rapidly estimate cycle-
accurate performance, obtain correct output data, or detect

possible deadlock situations. Note that in order to increase the
readability of the code, we chose to generate the simulation file
by transforming it from the source code; but tool vendors may
also choose to generate the simulation file from the LLVM IR
to exploit the LLVM optimizations.

One limitation of FLASH is that it does not model the
stalls from the external memory access. We plan to incorporate
this functionality in the future to provide accurate perfor-
mance estimation for wider range of benchmarks. Another
limitation is that FLASH serially simulates the pipelined/task-
level parallelism. We plan to parallelize the implementation
using Pthread/OpenMP so that large-scale simulation can be
performed by exploiting multicore architecture.

Other future work includes allowing FLASH to provide a
quick performance estimation for design space exploration of
input-dependent benchmarks. Moreover, we hope to incorpo-
rate the Intel HLS flow if their tool’s synthesis report provides
detailed scheduling information in the future.

ACKNOWLEDGMENT

We are grateful to Xilinx for the generous software and
hardware donation. We thank Seonmyeong Bak (Georgia
Tech.), Professor Miryung Kim (UCLA), Chaosheng Shi (Xil-
inx), and Professor Zhiru Zhang (Cornell Univ.) for many
helpful discussions and suggestions. We would also like to
express our gratitude to the anonymous reviewers for their
detailed comments and Marci Baun and Janice Wheeler for
proofreading this paper.

REFERENCES

[1] J. Cong et al., “High-level synthesis for FPGAs: From prototyping to
deployment,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473–491, Apr. 2011.

[2] Xilinx. (2018) Vivado High-level Synthesis (UG902). [Online].
Available: https://www.xilinx.com/

[3] Intel. (2019) Intel FPGA SDK for OpenCL Pro Edition. [Online].
Available: https://www.intel.com/

[4] O. Segal et al., “Sparkcl: A unified programming framework for
accelerators on heterogeneous clusters,” ArXiv Preprint, 2015. [Online].
Available: https://arxiv.org/abs/1505.01120

[5] E. Sozzo et al., “A common backend for hardware acceleration on
FPGA,” in IEEE Int. Conf. Comput. Design, 2017, pp. 427–430.

[6] C. Yu et al., “S2FA: an accelerator automation framework for hetero-
geneous computing in datacenters,” in Proc. Ann. Design Automation
Conf., 2018.

[7] Mentor Graphics. (2019) ModelSim PE. [Online]. Available: https:
//www.mentor.com/

[8] Cadence. (2019) Incisive Enterprise Simulator. [Online]. Available:
http://www.cadence.com

[9] Synopsys. (2019) VCS Functional Verification Solution. [Online].
Available: https://www.synopsys.com/verification/simulation/vcs.html

[10] ——. (2019) ZeBu Fast Emulation. [Online]. Available: https:
//www.synopsys.com/verification/emulation.html

[11] J. Goeders and S. J. Wilton, “Effective FPGA debug for high-level
synthesis generated circuits,” in IEEE Int. Conf. Field Programmable
Logic and Appl., 2014.

[12] ——, “Using dynamic signal-tracing to debug compiler-optimized HLS
circuits on FPGAs,” in IEEE Ann. Int. Symp. Field-Programmable
Custom Computing Machines, 2015, pp. 127–134.

[13] ——, “Signal-tracing techniques for in-system FPGA debugging of
high-level synthesis circuits,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 1, pp. 83–96, Jan. 2017.

[14] J. S. Monson and B. L. Hutchings, “New approaches for in-system debug
of behaviorally-synthesized FPGA circuits,” in IEEE Int. Conf. Field
Programmable Logic and Appl., 2014.

https://www.xilinx.com/
https://www.intel.com/
https://arxiv.org/abs/1505.01120
https://www.mentor.com/
https://www.mentor.com/
http://www.cadence.com
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/emulation.html
https://www.synopsys.com/verification/emulation.html

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 1, NO. 1, JANUARY 2020 14

[15] ——, “Using source-level transformations to improve high-level synthe-
sis debug and validation on FPGAs,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2015, pp. 5–8.

[16] Y. Choi and J. Cong, “HLScope: High-level performance debugging for
FPGA designs,” in IEEE Ann. Int. Symp. Field-Programmable Custom
Computing Machines, 2017, pp. 125–128.

[17] A. Verma et al., “Developing dynamic profiling and debugging support
in OpenCL for FPGAs,” in Proc. Ann. Design Automation Conf., 2017,
pp. 56–61.

[18] J. Cong, Z. Fang, H. Kianinejad, and P. Wei, “Revisiting FPGA
acceleration of molecular dynamics simulation with dynamic data
flow behavior in high-level synthesis,” ArXiv Preprint, 2016. [Online].
Available: https://arxiv.org/abs/1611.04474

[19] S. Dai, M. Tan, K. Hao, and Z. Zhang, “Flushing-enabled loop pipelining
for high-level synthesis,” in Proc. Ann. Design Automation Conf., 2014.

[20] S. Lahti, P. Sjövall, and J. Vanne, “Are we there yet? A study on the
state of high-level synthesis,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 5, pp. 898–911, May 2019.

[21] P. Coussy et al., “An introduction to high-level synthesis,” IEEE Design
& Test of Comput., vol. 26, no. 4, pp. 8–17, Jul. 2009.

[22] Y. Chi, Y. Choi, J. Cong, and J. Wang, “Rapid cycle-accurate simu-
lator for high-level synthesis,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2019, pp. 178–183.

[23] A. Canis et al., “From software to accelerators with LegUp high-level
synthesis,” in Proc. Int. Conf. Compilers, Architectures and Synthesis
for Embedded Systems, 2013, pp. 18–26.

[24] Y. Choi, P. Zhang, P. Li, and J. Cong, “HLScope+: Fast and accurate
performance estimation for FPGA HLS,” in Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, 2017, pp. 691–698.

[25] M. Nanjundappa et al., “SCGPSim: A fast SystemC simulator on GPUs,”
in Proc. Asia and South Pacific Design Automation Conf., 2010, pp.
149–154.

[26] M. Chung, J. Kim, and S. Ryu, “SimParallel: A high performance
parallel SystemC simulator using hierarchical multi-threading,” in IEEE
Int. Symp. Circuits and Systems, 2014, pp. 1472–1475.

[27] T. Schmidt, G. Liu, and R. Dömer, “Exploiting thread and data level
parallelism for ultimate parallel SystemC simulation,” in Proc. Ann.
Design Automation Conf., 2017.

[28] A. Mahapatra, Y. Liu, and B. C. Schafer, “Accelerating cycle-accurate
system-level simulations through behavioral templates,” Integration,
vol. 62, pp. 282–291, Jun. 2018.

[29] W. Snyder. (2017) Verilator: Speedy Reference Models, Direct from
RTL. [Online]. Available: https://www.veripool.org/

[30] Y. Chi, J. Cong, P. Wei, and P. Zhou, “SODA : stencil with optimized
dataflow architecture,” in Proc. IEEE/ACM Int. Conf. Computer-Aided
Design, 2018.

[31] S. Kundu and I. F. Akyildiz, “Deadlock free buffer allocation in closed
queueing networks,” Queueing Systems, vol. 4, no. 1, pp. 47–56, Mar.
1989.

[32] Y. Choi, “Performance debugging frameworks for high-level synthesis,”
Ph.D. dissertation, University of California, Los Angeles, Oct. 2019.

[33] Xilinx. (2017) FIFO Generator v13.2 (PG057). [Online]. Available:
https://www.xilinx.com/

[34] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed. Cambridge, MA: The MIT Press, 2005.

[35] L. Soule and T. Blank, “Parallel logic simulation on general purpose
machines,” in Proc. ACM/IEEE Design Automation Conf., 1988, pp.
166–171.

[36] R. Allen and K. Kennedy, Optimizing compilers for modern architec-
tures: a dependence-based approach. San Francisco, CA: Morgan
Kaufmann, 2002.

[37] Intel. (2000) Intel IA-64 Architecture Software Developer’s Manual .
[Online]. Available: https://www.intel.com/

[38] ROSE. (2019) ROSE compiler infrastructure. [Online]. Available:
http://rosecompiler.org/

[39] Falcon Computing Solutions. (2019) Merlin Compiler. [Online].
Available: https://www.falconcomputing.com/merlin-fpga-compiler/

[40] Xilinx. (2012) ChipScope Pro Software and Cores (UG029). [Online].
Available: https://www.xilinx.com/

[41] Intel. (2019) Quartus Prime Pro Edition Handbook. [Online]. Available:
https://www.intel.com/

[42] Xilinx. (2019) UltraScale architecture and product data sheet: overview
(DS890). [Online]. Available: https://www.xilinx.com/

[43] Intel. (2016) Intel Xeon Processor E5-2680 v4. [Online]. Available:
www.intel.com/

[44] J. Cong and J. Wang, “PolySA: polyhedral-based systolic array auto
compilation,” in Proc. IEEE/ACM Int. Conf. Computer-Aided Design,
2018.

[45] J. Liu and J. Cong, “Dataflow systolic array implementations of matrix
decomposition using high level synthesis,” in Proc. ACM/SIGDA Int.
Symp. Field-Programmable Gate Arrays, 2019, pp. 187–187.

[46] B. Reagon et al., “Machsuite: Benchmarks for accelerator design and
customized architectures,” in Proc. IEEE Int. Symp. Workload Charac-
terization, 2014, pp. 110–119.

[47] L. Pouchet. (2015) PolyBench/C. [Online]. Available: http://web.cse.
ohio-state.edu/∼pouchet.2/software/polybench/

[48] Y. Zhang et al., “FPGA vs. GPU for sparse matrix vector multiply,” in
IEEE Int. Conf. Field-Programmable Technology, 2009, pp. 255–262.

Young-kyu Choi (M’10) is a postdoctoral scholar
in computer science at the University of California,
Los Angeles, where he received his Ph.D. degree
in 2019. He received his B.S. and M.S. degrees in
electrical engineering from Seoul National Univer-
sity. He developed TV receivers at LG Electronics
from 2008 to 2011 and FPGA performance estima-
tion tools at Falcon Computing Solutions in 2017.
His current research interests include performance
debugging, simulation, and optimization with FPGA
high-level synthesis tools.

Yuze Chi received his B.S. degree in electronic
engineering from Tsinghua University and started
pursuing a Ph.D. degree in computer science in
2016. Yuze’s current research interests include soft-
ware/hardware co-optimization and high-level pro-
gramming infrastructure for heterogeneous systems.

Jie Wang received his B.S. degree from Tsinghua
University, Beijing, China, in 2015. He is currently
pursuing the Ph.D. degree at the University of
California, Los Angeles. His current research inter-
ests include domain-specific architecture design and
polyhedral compilation.

Jason Cong (F’00) received his B.S. degree in
computer science from Peking University in 1985,
his M.S. and Ph. D. degrees in computer science
from the University of Illinois at Urbana-Champaign
in 1987 and 1990, respectively. Currently, he is a
Distinguished Chancellor’s Professor at the Com-
puter Science Department, also with joint appoint-
ment from the Electrical Engineering Department, of
University of California, Los Angeles, the director
of Center for Domain-Specific Computing (CDSC),
and the director of VLSI Architecture, Synthesis,

and Technology (VAST) Laboratory. He served as the chair the UCLA
Computer Science Department from 2005 to 2008. Dr. Cong’s research inter-
ests include novel architectures and compilation for customizable computing,
synthesis of VLSI circuits and systems, and highly scalable algorithms. He
has close to 500 publications in these areas, including 15 best paper awards, 3
Ten-Year Most Influential Paper Awards, and one inducted to the FPGA and
Reconfigurable Computing Hall of Fame. He was elected to an IEEE Fellow
in 2000, an ACM Fellow in 2008, and a member of the National Academy
of Engineering in 2017.

https://arxiv.org/abs/1611.04474
https://www.veripool.org/
https://www.xilinx.com/
https://www.intel.com/
http://rosecompiler.org/
https://www.falconcomputing.com/merlin-fpga-compiler/
https://www.xilinx.com/
https://www.intel.com/
https://www.xilinx.com/
www.intel.com/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

	Introduction
	Related Work
	Problem Description and Motivating Examples
	Data Ordering Problem
	Module Latency Problem
	Feedback Problem
	Performance Estimation Problem

	Problem Statement and Challenges
	Automated Code Generation for Rapid Cycle-Accurate Simulation
	FIFO Communication Cycle-Accurate Simulation
	Matching Simulated State of Statements
	Cycle-Accurate FSM State
	FIFO Behavior Modeling
	FSM Stall Modeling
	Correctness of the Variable Reference
	Proof of FCCA Simulation

	Simulation of Parallelism
	Pipelined Parallelism
	Task-Level Parallelism

	Loop and Function Simulation

	Optimization of Pipelined Loops Simulation
	Cycle-Based Variable Liveness Analysis
	Pointer-Based Variable Access

	Overall Flow
	Source-Level Correctness Debugging and Performance Debugging
	Live Capture
	Source-Level Event Trigger and Performance Measurement
	Large Data Debugging

	Experimental Results
	Experimental Setup
	Simulation Time
	Accuracy

	Concluding Remarks
	References
	Biographies
	Young-kyu Choi
	Yuze Chi
	Jie Wang
	Jason Cong

