
1

SODA: Stencil with Optimized Dataflow Architecture

Yuze Chi, Jason Cong, Peng Wei, Peipei Zhou

University of California, Los Angeles

2

What is stencil computation?

3

What is Stencil Computation?

◆ A sliding window applied on an array
▪ Compute output according to some fixed pattern using the stencil window

◆ Extensively used in many areas
▪ Image processing, solving PDEs, cellular automata, etc.

◆ Example: a 5-point blur filter with uniform weights
void blur(float input [N][M],

float output[N][M]) {
for(int j = 1; j < N-1; ++j) {
for(int i = 1; i < M-1; ++i) {
output[j][i] = (
input[j-1][i] +
input[j][i-1] +
input[j][i] +
input[j][i+1] +
input[j+1][i]) * 0.2f;

}
}

}

blur

4

How do people do stencil computation?

5

Stencil Optimization #1: Data Reuse

◆ Non-uniform partitioning–based line buffer (DAC’14)

▪ Full data reuse, 1 PE

▪ Optimal size of reuse buffer

▪ Optimal number of memory banks

◆ But how to parallelize?

DAC’14: An Optimal Microarchitecture for Stencil Computation Acceleration Based on Non-Uniform Partitioning of Data Reuse Buffers

6
ICCAD’16: A Polyhedral Model-Based Framework for Dataflow Implementation on FPGA Devices of Iterative Stencil Loops

Stencil Optimization #2: Temporal Parallelization

◆ Multiple iterations / stages chained together (ICCAD’16)

▪ More iterations ⇒ better throughput

▪ Communication-bounded ⇒ Computation-bounded

▪ Parallelization within each iteration?

Input Iteration 1 Iteration 2 Output

On Chip

7

Element-Level Parallelization (FPGA’18) Tile-Level Parallelization (DAC’17)

DAC’17: A Comprehensive Framework for Synthesizing Stencil Algorithms on FPGAs using OpenCL Model
FPGA’18: Combined Spatial and Temporal Blocking for High-Performance Stencil Computation on FPGAs Using OpenCL

Stencil Optimization #3: Spatial Parallelization

▪ Fine-grained parallelism

▪ Private reuse buffers w/ duplication

▪ Coarse-grained parallelism

▪ Private reuse buffers

8

◆ Previous works use private reuse buffers

▪ 𝑘 PEs require 𝑆𝑟 × 𝑘 storage

• 𝑆𝑟: reuse distance, the distance from the first data element to the last data element

▪ Sub-optimal buffer size

▪ Not scalable when k increases

Stencil Optimization: Parallelization

9

Can we do better?

10

SODA as a Microarchitecture: Data Reuse

◆ For 𝑘 = 3 PEs

▪ 𝑘 PEs only require 𝑆𝑟 + 𝑘 − 1 storage

▪ Full data reuse

▪ Optimal buffer size

▪ Scalable when k increases

11

SODA as a Microarchitecture: Spatial Parallelization

Reuse Buffer

12

SODA as a Microarchitecture: Temporal Parallelization

13

How do you program such a messy fancy architecture?

14

Stencil Optimization #4: Domain-Specific Language Support

◆ Complex hardware architecture

◆ How to program?

▪ Template-based

• DAC’14, ICCAD’16, FPGA’18

▪ Domain-specific language (DSL)

• Darkroom, Halide, Hipacc…

◆ SODA uses a DSL

▪ Flexible

▪ Programmable

15

SODA as an Automation Framework

User-Defined
SODA DSL Kernel

User-Defined
C++ Host Application

FPGA
Bitstream

Host
Program

g++ (GCC) xocc (SDAccel)

Dataflow
HLS Kernel

sodac (SODA)
User-Defined Input

Executable Results

Xilinx
OpenCL API

Intermediate Code

Design-Space
Exploration

(SODA)

Large Design Space
(up to 1010)

#PEs
(up to 102)

Tile size (up to 106)

#Iteration
(up to 102)

How to
explore?

16

How do you explore such a huge design space?

17

SODA as an Exploration Engine: Resource Modeling

Modularized Design Enabling Accurate
Architecture-Specific ModelingResource Modeling Flow

SODA DSL input

Has resource
model for
module?

No
Run HLS for

module

Yes

Complete resource
model

sodac

• HLS code of each module
• Number of each module

for each module

Module model
database

18

SODA as an Exploration Engine: Performance Modeling

Throughput limited by
external bandwidth

#PEs / stage0

Th
ro

u
gh

p
u

t

Throughput achieved

Performance Roofline Model

19

SODA as an Exploration Engine: Design-Space Pruning

◆ Unroll factor 𝑘

▪ Only powers of 2 make sense due to the memory port

◆ Iteration factor 𝑞

▪ Bounded by available resources, 𝑘𝑞 ≤ 102

◆ Tile size 𝑇0, 𝑇1, …

▪ Bounded by available on-chip storage

▪ Searched via branch-and-bound

◆ Can finish exploration in up to 3 minutes

20

What does your result look like?

21

Experimental Results: Model Accuracy

Prediction Item BRAM DSP LUT FF Throughput

Average Error 1.84% 0% 6.23% 7.58% 4.22%

◆ Model prediction targets

▪ Resource modeling target: post-synthesis resource utilization

▪ Performance modeling target: on-board execution throughput

22

Experimental Results: Performance Comparison

0

0.2

0.4

0.6

0.8

1

1.2

SOBEL 2D DENOISE 2D DENOISE 3D

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Non-Iterative Stencil

24t-CPU DAC'14 SODA

0

0.5

1

1.5

2

2.5

3

3.5

JACOBI 2D JACOBI 3D SEIDEL 2D HEAT 3D
N

o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Iterative Stencil

24t-CPU ICCAD'16 FPGA'18 SODA

Synthesis Tool: SDAccel / Vivado HLS 2017.2 FPGA: ADM-PCIE-KU3 w/ XCKU060 CPU: Intel Xeon E5-2620 v3 x2

23

What are the takeaways?

24

SODA: Stencil with Optimized Dataflow Architecture

◆ SODA is a Microarchitecture

▪ Flexible & scalable reuse buffers for multiple PEs

◆ SODA is an Automation Framework

▪ From DSL to hardware, end-to-end automation

◆ SODA is an Exploration Engine

▪ Optimal parameters via model-driven exploration

25

References

▪ DAC’14: An Optimal Microarchitecture for Stencil Computation Acceleration Based on

Non-Uniform Partitioning of Data Reuse Buffers, Cong et al.

▪ ICCAD’16: A Polyhedral Model-Based Framework for Dataflow Implementation on FPGA

Devices of Iterative Stencil Loops, Natale et al.

▪ DAC’17: A Comprehensive Framework for Synthesizing Stencil Algorithms on FPGAs using

OpenCL Model, Wang and Liang

▪ FPGA’18: Combined Spatial and Temporal Blocking for High-Performance Stencil

Computation on FPGAs Using OpenCL, Zohouri et al.

26

Thank you!
Q&A

Acknowledgments
This work is partially supported by the Intel and NSF joint research
program for Computer Assisted Programming for Heterogeneous
Architectures (CAPA), and the contributions from Fujitsu Labs,
Huawei, and Samsung under the CDSC industrial partnership program.
We thank Amazon for providing AWS F1 credits.

