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What is stencil computation?
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What is Stencil Computation?

◆ A sliding window applied on an array
▪ Compute output according to some fixed pattern using the stencil window

◆ Extensively used in many areas
▪ Image processing, solving PDEs, cellular automata, etc.

◆ Example: a 5-point blur filter with uniform weights
void blur(float input [N][M],

float output[N][M]) {
for(int j = 1; j < N-1; ++j) {
for(int i = 1; i < M-1; ++i) {
output[j][i] = (
input[j-1][i ] +
input[j  ][i-1] +
input[j  ][i ] +
input[j  ][i+1] +
input[j+1][i ] ) * 0.2f;

}
}

}

blur
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How do people do stencil computation?
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Stencil Optimization #1: Data Reuse

◆ Non-uniform partitioning–based line buffer (DAC’14)

▪ Full data reuse, 1 PE

▪ Optimal size of reuse buffer

▪ Optimal number of memory banks

◆ But how to parallelize?

DAC’14: An Optimal Microarchitecture for Stencil Computation Acceleration Based on Non-Uniform Partitioning of Data Reuse Buffers



6
ICCAD’16: A Polyhedral Model-Based Framework for Dataflow Implementation on FPGA Devices of Iterative Stencil Loops

Stencil Optimization #2: Temporal Parallelization

◆ Multiple iterations / stages chained together (ICCAD’16)

▪ More iterations ⇒ better throughput

▪ Communication-bounded ⇒ Computation-bounded

▪ Parallelization within each iteration?

Input Iteration 1 Iteration 2   Output

On Chip
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Element-Level Parallelization (FPGA’18) Tile-Level Parallelization (DAC’17)

DAC’17: A Comprehensive Framework for Synthesizing Stencil Algorithms on FPGAs using OpenCL Model
FPGA’18:  Combined Spatial and Temporal Blocking for High-Performance Stencil Computation on FPGAs Using OpenCL

Stencil Optimization #3: Spatial Parallelization

▪ Fine-grained parallelism

▪ Private reuse buffers w/ duplication

▪ Coarse-grained parallelism

▪ Private reuse buffers
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◆ Previous works use private reuse buffers

▪ 𝑘 PEs require 𝑆𝑟 × 𝑘 storage

• 𝑆𝑟: reuse distance, the distance from the first data element to the last data element

▪ Sub-optimal buffer size

▪ Not scalable when k increases

Stencil Optimization: Parallelization
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Can we do better?
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SODA as a Microarchitecture: Data Reuse

◆ For 𝑘 = 3 PEs

▪ 𝑘 PEs only require 𝑆𝑟 + 𝑘 − 1 storage

▪ Full data reuse

▪ Optimal buffer size

▪ Scalable when k increases
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SODA as a Microarchitecture: Spatial Parallelization

Reuse Buffer
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SODA as a Microarchitecture: Temporal Parallelization
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How do you program such a messy fancy architecture?
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Stencil Optimization #4: Domain-Specific Language Support

◆ Complex hardware architecture

◆ How to program?

▪ Template-based

• DAC’14, ICCAD’16, FPGA’18

▪ Domain-specific language (DSL)

• Darkroom, Halide, Hipacc…

◆ SODA uses a DSL

▪ Flexible

▪ Programmable
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SODA as an Automation Framework

User-Defined
SODA DSL Kernel

User-Defined
C++ Host Application 
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How do you explore such a huge design space?
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SODA as an Exploration Engine: Resource Modeling

Modularized Design Enabling Accurate 
Architecture-Specific ModelingResource Modeling Flow

SODA DSL input

Has resource 
model for 
module?

No
Run HLS for 

module

Yes

Complete resource 
model

sodac

• HLS code of each module
• Number of each module

for each module

Module model 
database
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SODA as an Exploration Engine: Performance Modeling
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SODA as an Exploration Engine: Design-Space Pruning

◆ Unroll factor 𝑘

▪ Only powers of 2 make sense due to the memory port

◆ Iteration factor 𝑞

▪ Bounded by available resources, 𝑘𝑞 ≤ 102

◆ Tile size 𝑇0, 𝑇1, …

▪ Bounded by available on-chip storage

▪ Searched via branch-and-bound

◆ Can finish exploration in up to 3 minutes
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What does your result look like?
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Experimental Results: Model Accuracy

Prediction Item BRAM DSP LUT FF Throughput

Average Error 1.84% 0% 6.23% 7.58% 4.22%

◆ Model prediction targets

▪ Resource modeling target: post-synthesis resource utilization

▪ Performance modeling target: on-board execution throughput
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Experimental Results: Performance Comparison
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What are the takeaways?
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SODA: Stencil with Optimized Dataflow Architecture

◆ SODA is a Microarchitecture

▪ Flexible & scalable reuse buffers for multiple PEs

◆ SODA is an Automation Framework

▪ From DSL to hardware, end-to-end automation

◆ SODA is an Exploration Engine

▪ Optimal parameters via model-driven exploration
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Thank you!
Q&A
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