
Accelerating SSSP
for Power-Law Graphs

Yuze Chi, Licheng Guo, Jason Cong

{chiyuze,lcguo,cong}@cs.ucla.edu

Single-Source Shortest Path (SSSP)

• Widely used in many applications

• Road navigation

• Telecom network routing

• Neural image reconstruction

• Social network analysis

• For a given positive-weighted, directed graph 𝐺 = (𝑉, 𝐸)

• An undirected edge → two directed edges

• Given a source vertex 𝑢 ∈ 𝑉

• Find the shortest-path tree from 𝑢, including

• The shortest distance from 𝑢 to each vertex

• The parent of each vertex

2

Dijkstra’s Algorithm (w/ Priority Queue)

• Relax edges only when necessary

• Store active vertices in a priority queue

• Only relax edges from the shortest known distance

• No redundant work

3

SSSP for Power-Law Graphs is Challenging

• Planar graphs: small frontier, does not scale with graph size

• Power-law graphs: large frontier, does scale with graph size

• One of the kernels of Graph 500 benchmarks

4

Power-law graphs

Planar graphs

SSSP for Power-Law Graphs is Challenging

• High-performance SSSP for power-law graphs requires

• High-throughput and high-capacity priority queue for high work-efficiency

• Fast memory system with high random-access throughput for fast edge traversal

System
Lang-

uage
Algorithm

Work-

efficient?

Power

-law?

Priority

queue?
Vertex cache?

Maximum

MTEPS

Chronos[ASPLOS’20] RTL Dijkstra’s Variant Yes No P-heap App.-agnostic 360

GraphLily[ICCAD’21] HLS Bellman-Ford No Yes No Scratchpad <232

HitGraph[TPDS’19] RTL Bellman-Ford No Yes No Scratchpad 46.9

Lei et. al[TCAS-II’16] RTL Dijkstra’s Variant Yes No ExSAPQ No 9.2

Takei et. al[PDPTA’15] RTL Dijkstra’s Yes No No On-chip only 0.4

ThunderGP[FPGA’21] HLS Bellman-Ford No Yes No Scratchpad <122

SPLAG[FPGA’22] HLS Dijkstra’s Variant Yes Yes CGPQ CVC 763

5

Solution: Relaxing the Priority Definition

• Strict priority

• Distance from root → fine-grained (e.g., 32 bit float distance)

• Binary heap/pipelined heap/systolic priority queue/etc.

• Hard to scale to large size with a high throughput

• Relaxed priority

• Distance from root/Δ → coarse-grained (e.g., 6 bit uint bucket)

• High throughput: concurrent push & pop

• Scalable to large size with high throughput

6

SPLAG Algorithm

• Require: A graph 𝐺 = (𝑉 , 𝐸) and 𝑟𝑜𝑜𝑡 ∈ 𝑉

• Ensure: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 represent the shortest-path tree from 𝑟𝑜𝑜𝑡
1. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = [{𝑑𝑖𝑠𝑡 = ∞, 𝑝𝑎𝑟𝑒𝑛𝑡 = null}, · · ·]

2. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑟𝑜𝑜𝑡] = [{𝑑𝑖𝑠𝑡 = 0, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑟𝑜𝑜𝑡 }]

3. 𝑞𝑢𝑒𝑢𝑒 = [{𝑖𝑑 = 𝑟𝑜𝑜𝑡, 𝑑𝑖𝑠𝑡 = 0, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑟𝑜𝑜𝑡 }]

4. while not 𝑞𝑢𝑒𝑢𝑒.empty() in parallel do

5. 𝑢 = 𝑞𝑢𝑒𝑢𝑒.pop() ⊲ CGPQ

6. if 𝑢.𝑑𝑖𝑠𝑡 ≤ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑢.𝑖𝑑].𝑑𝑖𝑠𝑡 then ⊲ CVC

7. for all 𝑒 = 𝑢.𝑖𝑑 → 𝑣𝑖𝑑 ∈ 𝐸 in parallel do ⊲ Edge Fetcher

8. if 𝑣𝑖𝑑 ≠ 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 then ⊲ Edge Fetcher

9. 𝑑 = 𝑢.𝑑𝑖𝑠𝑡 + 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ⊲ Edge Fetcher

10. if 𝑑 < 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑣𝑖𝑑].𝑑𝑖𝑠𝑡 then ⊲ CVC

11. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑣𝑖𝑑] = {𝑑𝑖𝑠𝑡 = 𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢.𝑖𝑑} ⊲ CVC

12. 𝑞𝑢𝑒𝑢𝑒.push({𝑖𝑑 = 𝑣𝑖𝑑, 𝑑𝑖𝑠𝑡 = 𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢.𝑖𝑑}) ⊲ CGPQ

7

SPLAG Architecture

• Each component is internally partitioned & parallelized

• Multi-stage network used for inter-partition communication

8

(8 HBM channels) (16 HBM channels) (8 HBM channels)

Customized Vertex Cache (CVC)

• Direct-mapped, write-back

• Fully pipelined

• Hiding off-chip memory latency

• Leverages tapa::async_mmap

• Application-specific operations

• Updating vertices atomically from the edge fetcher

• Filtering vertices from CGPQ to the edge fetcher

• Both operations discard redundant relaxation

9

(16 banks in practice)

Coarse-Grained Priority Queue (CGPQ)

• Inspired by “deque”

• Assign bucket ID based on distance

• Divide each bucket into chunks

• Buffer 1 chunk per bucket

• Spill excessive chunks off-chip

• Refill chunk with shortest distance

10

(16 ports)

(16 ports)

(8 HBM channels)

CGPQ Chunk Buffer Design

• Highly concurrent design for high throughput

• Inter-bucket & intra-bucket parallelism

• Support spilling & refilling for high capacity

• Spilling & refilling in unit of chunks

11

CGPQ Spilling & Refilling

• The chunk buffer keeps track of the size of each buffered chunk

• A chunk spills into DRAM when it is almost full

• Location in DRAM and priority of spilled chunk are stored in an on-chip

chunk priority queue (CPQ)

• A spilled chunk refills into chunk buffer when

• It is the highest-priority chunk, and it is almost empty

• The on-chip CPQ finds the highest-priority chunk

12

CGPQ Spilling & Refilling Example

13

(up to 256k chunks)

(1024 vertices)

Edge Fetcher

• Handles neighbor edge traversal

• Computes a new tentative distance of each neighbor

14

(8 banks in practice)

Evaluation: Datasets

Dataset #Vertex #Edge Maximum Degree Average Degree Source

amzn 2.1M 6M 12k 3 Amazon product ratings

dblp 0.5M 15M 3k 28 DBLP paper coauthors

digg 0.9M 4M 31k 4 Users from digg.com

flickr 2.3M 33M 34k 14 Flicker users

g500-𝑁 2𝑁 2𝑁+4 20.6𝑁+5 16 Graph 500 datasets

hlwd-09 1.1M 58M 12k 50 Actor collaboration

orkut 3.0M 106M 28k 36 Orkut social network

rmat-21 2.1M 91M 214k 44 A Kronecker graph

wiki 0.3M 3M 3k 11 Wiki article-word graph

youtube 3.2M 12M 130k 4 YouTube users

15

Evaluation: CGPQ Capacity

16

• Spilling is effective

• Spilling is scalable

• High-capacity PQ ✔️

Evaluation: CGPQ Throughput

17

• CVC idling <8%

• May be caused by

• Empty CGPQ

• Pop throughput too slow

• CGPQ never stalls CVC

• High-throughput PQ ✔️

Evaluation: CVC Hit Rate

18

• Read hit rate

• 100% −
#off−chip reads

#reads

• >80%

• Write hit rate

• 100% −
#off−chip writes

#writes

• >50%

• Fast memory system ✔️

Evaluation: Edge Traversal Breakdown

19

• Each traversed edge may

• Be discarded

• By CVC updating (not shown)

• Be pushed to CGPQ

• Generates active vertices 👉

• Active vertices may

• Be processed by

• The edge fetcher (bar)

• Be discarded by

• CVC filtering (bar)

Evaluation: Work Efficiency

• Amount of work

•
#edges traversed

#directed edges in

connected component

• Work-efficient ✔️

20

Evaluation: Throughput

21

• Traversal throughput

•
#edges traversed
execution time

• Algorithm throughput

•

#undirected edges in

connected component
execution time

• Metric used by Graph 500

Evaluation: Comparison

Dataset System Hardware Algorithm
Throughput (MTEPS) SPLAG’s

SpeedupTraversal Algorithm

hlwd-09

Galois[PLDI’07] Xeon 6244 CPU Δ-Stepping 1229 211 2.6×

ADDS[PPoPP’21] A100 40G GPU ADDS 31242 1455 0.4×

GraphLily[ICCAD’21] U280 FPGA Bellman-Ford 4670 <232 >2.3×

SPLAG[FPGA’22] U280 FPGA SPLAG 1744 543 1×

ThunderGP[FPGA’21] U250 FPGA Bellman-Ford 2454 <122 >2.6×

SPLAG[FPGA’22] U250 FPGA SPLAG 756 315 1×

rmat-21

Galois[PLDI’07] Xeon 6244 CPU Δ-Stepping 930 254 1.9×

ADDS[PPoPP’21] A100 40G GPU ADDS 15878 530 0.9×

GraphLily[ICCAD’21] U280 FPGA Bellman-Ford 2823 <195 >2.5×

SPLAG[FPGA’22] U280 FPGA SPLAG 1354 494 1×

HitGraph[FPGA’21] VU5P FPGA Bellman-Ford 2152 46.9 4.9×

SPLAG[FPGA’22] VU5P FPGA SPLAG 533 228 1×

g500-21 SPLAG[FPGA’22] U280 FPGA SPLAG 1257 504 1×

22

https://github.com/UCLA-VAST/Galois
https://github.com/UCLA-VAST/Galois

In a Nutshell

• SPLAG is

• Performant & energy-efficient

• Portable & open-source (https://github.com/UCLA-VAST/splag)

• Thanks to

• CGPQ & CVC

• TAPA (https://github.com/UCLA-VAST/tapa)

• Feedback & suggestions are appreciated

23

https://github.com/UCLA-VAST/splag
https://github.com/UCLA-VAST/tapa

References

• Δ-stepping: a parallelizable shortest path algorithm, Meyer & Sanders, in Journal of Algorithms, 2003.

• [Galois]: Optimistic Parallelism Requires Abstractions, Kulkarni et al., in PLDI, 2007.

• [Takei et al.]: Evaluation of an FPGA-Based Shortest-Path-Search Accelerator, Takei et al., In PDPTA, 2015.

• [Lei et al.]: An FPGA Implementation for Solving the Large Single-Source-Shortest-Path Problem, Lei et al., in TCAS-II, 2016.

• HitGraph: High-Throughput Graph Processing Framework on FPGA, Zhou et al., in TPDS, 2019.

• Chronos: Efficient Speculative Parallelism for Accelerators, Abeydeera & Sanchez, in ASPLOS, 2020.

• ThunderGP: HLS-Based Graph Processing Framework on FPGAs, Chen et al., in FPGA, 2021.

• [ADDS]: A Fast Work-Efficient SSSP Algorithm for GPUs, Wang et al., in PPoPP, 2021.

• GraphLily: Accelerating Graph Linear Algebra on HBM-Equipped FPGAs, Hu et al., in ICCAD, 2021.

24

https://github.com/IntelligentSoftwareSystems/Galois
https://github.com/UCLA-VAST/adds

25

Acknowledgment
This work is partially supported by the NSF RTML program (CCF1937599), NIH Brain
Initiative (U01MH117079), the Xilinx Adaptive Compute Clusters (XACC) program, CRISP,
one of six JUMP centers, and support of the CDSC industrial partners.

https://cdsc.ucla.edu/partners

