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Single-Source Shortest Path (SSSP)

• Widely used in many applications

• Road navigation

• Telecom network routing

• Neural image reconstruction

• Social network analysis

• For a given positive-weighted, directed graph 𝐺 = (𝑉, 𝐸)

• An undirected edge → two directed edges

• Given a source vertex 𝑢 ∈ 𝑉

• Find the shortest-path tree from 𝑢, including

• The shortest distance from 𝑢 to each vertex

• The parent of each vertex
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Dijkstra’s Algorithm (w/ Priority Queue)

• Relax edges only when necessary

• Store active vertices in a priority queue

• Only relax edges from the shortest known distance

• No redundant work
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SSSP for Power-Law Graphs is Challenging

• Planar graphs: small frontier, does not scale with graph size

• Power-law graphs: large frontier, does scale with graph size

• One of the kernels of Graph 500 benchmarks
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Power-law graphs

Planar graphs



SSSP for Power-Law Graphs is Challenging

• High-performance SSSP for power-law graphs requires

• High-throughput and high-capacity priority queue for high work-efficiency

• Fast memory system with high random-access throughput for fast edge traversal
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Chronos[ASPLOS’20] RTL Dijkstra’s Variant Yes No P-heap App.-agnostic 360

GraphLily[ICCAD’21] HLS Bellman-Ford No Yes No Scratchpad <232

HitGraph[TPDS’19] RTL Bellman-Ford No Yes No Scratchpad 46.9

Lei et. al[TCAS-II’16] RTL Dijkstra’s Variant Yes No ExSAPQ No 9.2

Takei et. al[PDPTA’15] RTL Dijkstra’s Yes No No On-chip only 0.4

ThunderGP[FPGA’21] HLS Bellman-Ford No Yes No Scratchpad <122

SPLAG[FPGA’22] HLS Dijkstra’s Variant Yes Yes CGPQ CVC 763
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Solution: Relaxing the Priority Definition

• Strict priority

• Distance from root → fine-grained (e.g., 32 bit float distance)

• Binary heap/pipelined heap/systolic priority queue/etc.

• Hard to scale to large size with a high throughput

• Relaxed priority

• Distance from root/Δ → coarse-grained (e.g., 6 bit uint bucket)

• High throughput: concurrent push & pop

• Scalable to large size with high throughput
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SPLAG Algorithm

• Require:   A graph 𝐺 = (𝑉 , 𝐸) and 𝑟𝑜𝑜𝑡 ∈ 𝑉

• Ensure:    𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 represent the shortest-path tree from 𝑟𝑜𝑜𝑡
1. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = [{𝑑𝑖𝑠𝑡 = ∞, 𝑝𝑎𝑟𝑒𝑛𝑡 = null}, · · · ]

2. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑟𝑜𝑜𝑡] = [{𝑑𝑖𝑠𝑡 = 0, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑟𝑜𝑜𝑡 }]

3. 𝑞𝑢𝑒𝑢𝑒 = [{𝑖𝑑 = 𝑟𝑜𝑜𝑡, 𝑑𝑖𝑠𝑡 = 0, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑟𝑜𝑜𝑡 }]

4. while not 𝑞𝑢𝑒𝑢𝑒.empty() in parallel do

5. 𝑢 = 𝑞𝑢𝑒𝑢𝑒.pop() ⊲ CGPQ

6. if 𝑢.𝑑𝑖𝑠𝑡 ≤ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑢.𝑖𝑑].𝑑𝑖𝑠𝑡 then ⊲ CVC

7. for all 𝑒 = 𝑢.𝑖𝑑 → 𝑣𝑖𝑑 ∈ 𝐸 in parallel do ⊲ Edge Fetcher

8. if 𝑣𝑖𝑑 ≠ 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 then ⊲ Edge Fetcher

9. 𝑑 = 𝑢.𝑑𝑖𝑠𝑡 + 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ⊲ Edge Fetcher

10. if 𝑑 < 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑣𝑖𝑑].𝑑𝑖𝑠𝑡 then ⊲ CVC

11. 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠[𝑣𝑖𝑑] = {𝑑𝑖𝑠𝑡 = 𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢.𝑖𝑑} ⊲ CVC

12. 𝑞𝑢𝑒𝑢𝑒.push({𝑖𝑑 = 𝑣𝑖𝑑, 𝑑𝑖𝑠𝑡 = 𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢.𝑖𝑑}) ⊲ CGPQ
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SPLAG Architecture

• Each component is internally partitioned & parallelized

• Multi-stage network used for inter-partition communication
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Customized Vertex Cache (CVC)

• Direct-mapped, write-back

• Fully pipelined

• Hiding off-chip memory latency

• Leverages tapa::async_mmap

• Application-specific operations

• Updating vertices atomically from the edge fetcher

• Filtering vertices from CGPQ to the edge fetcher

• Both operations discard redundant relaxation
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(16 banks in practice)



Coarse-Grained Priority Queue (CGPQ)

• Inspired by “deque”

• Assign bucket ID based on distance

• Divide each bucket into chunks

• Buffer 1 chunk per bucket

• Spill excessive chunks off-chip

• Refill chunk with shortest distance
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(16 ports)

(8 HBM channels)



CGPQ Chunk Buffer Design

• Highly concurrent design for high throughput

• Inter-bucket & intra-bucket parallelism

• Support spilling & refilling for high capacity

• Spilling & refilling in unit of chunks
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CGPQ Spilling & Refilling

• The chunk buffer keeps track of the size of each buffered chunk

• A chunk spills into DRAM when it is almost full

• Location in DRAM and priority of spilled chunk are stored in an on-chip 

chunk priority queue (CPQ)

• A spilled chunk refills into chunk buffer when 

• It is the highest-priority chunk, and it is almost empty

• The on-chip CPQ finds the highest-priority chunk
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CGPQ Spilling & Refilling Example
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(up to 256k chunks)

(1024 vertices)



Edge Fetcher

• Handles neighbor edge traversal

• Computes a new tentative distance of each neighbor
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(8 banks in practice)



Evaluation: Datasets

Dataset #Vertex #Edge Maximum Degree Average Degree Source

amzn 2.1M 6M 12k 3 Amazon product ratings

dblp 0.5M 15M 3k 28 DBLP paper coauthors

digg 0.9M 4M 31k 4 Users from digg.com

flickr 2.3M 33M 34k 14 Flicker users

g500-𝑁 2𝑁 2𝑁+4 20.6𝑁+5 16 Graph 500 datasets

hlwd-09 1.1M 58M 12k 50 Actor collaboration

orkut 3.0M 106M 28k 36 Orkut social network

rmat-21 2.1M 91M 214k 44 A Kronecker graph

wiki 0.3M 3M 3k 11 Wiki article-word graph

youtube 3.2M 12M 130k 4 YouTube users
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Evaluation: CGPQ Capacity
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• Spilling is effective

• Spilling is scalable

• High-capacity PQ ✔️



Evaluation: CGPQ Throughput
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• CVC idling <8%

• May be caused by

• Empty CGPQ

• Pop throughput too slow

• CGPQ never stalls CVC

• High-throughput PQ ✔️



Evaluation: CVC Hit Rate
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• Read hit rate

• 100% −
#off−chip reads

#reads

• >80%

• Write hit rate

• 100% −
#off−chip writes

#writes

• >50%

• Fast memory system ✔️



Evaluation: Edge Traversal Breakdown
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• Each traversed edge may

• Be discarded

• By CVC updating (not shown)

• Be pushed to CGPQ

• Generates active vertices 👉

• Active vertices may

• Be processed by

• The edge fetcher (        bar)

• Be discarded by

• CVC filtering (        bar)



Evaluation: Work Efficiency

• Amount of work

•
#edges traversed

#directed edges in

connected component

• Work-efficient ✔️
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Evaluation: Throughput
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• Traversal throughput

•
#edges traversed
execution time

• Algorithm throughput

•

#undirected edges in

connected component
execution time

• Metric used by Graph 500



Evaluation: Comparison

Dataset System Hardware Algorithm
Throughput (MTEPS) SPLAG’s

SpeedupTraversal Algorithm

hlwd-09

Galois[PLDI’07] Xeon 6244 CPU Δ-Stepping 1229 211 2.6×

ADDS[PPoPP’21] A100 40G GPU ADDS 31242 1455 0.4×

GraphLily[ICCAD’21] U280 FPGA Bellman-Ford 4670 <232 >2.3×

SPLAG[FPGA’22] U280 FPGA SPLAG 1744 543 1×

ThunderGP[FPGA’21] U250 FPGA Bellman-Ford 2454 <122 >2.6×

SPLAG[FPGA’22] U250 FPGA SPLAG 756 315 1×

rmat-21

Galois[PLDI’07] Xeon 6244 CPU Δ-Stepping 930 254 1.9×

ADDS[PPoPP’21] A100 40G GPU ADDS 15878 530 0.9×

GraphLily[ICCAD’21] U280 FPGA Bellman-Ford 2823 <195 >2.5×

SPLAG[FPGA’22] U280 FPGA SPLAG 1354 494 1×

HitGraph[FPGA’21] VU5P FPGA Bellman-Ford 2152 46.9 4.9×

SPLAG[FPGA’22] VU5P FPGA SPLAG 533 228 1×

g500-21 SPLAG[FPGA’22] U280 FPGA SPLAG 1257 504 1×
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https://github.com/UCLA-VAST/Galois
https://github.com/UCLA-VAST/Galois


In a Nutshell

• SPLAG is

• Performant & energy-efficient

• Portable & open-source (https://github.com/UCLA-VAST/splag)

• Thanks to

• CGPQ & CVC

• TAPA (https://github.com/UCLA-VAST/tapa)

• Feedback & suggestions are appreciated
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