
Accelerating SSSP for Power-Law Graphs
Yuze Chi

chiyuze@cs.ucla.edu
University of California, Los Angeles

Licheng Guo

lcguo@cs.ucla.edu
University of California, Los Angeles

Jason Cong

cong@cs.ucla.edu
University of California, Los Angeles

ABSTRACT
The single-source shortest path (SSSP) problem is one of the most

important and well-studied graph problems widely used in many

application domains, such as road navigation, neural image recon-

struction, and social network analysis. Although we have known

various SSSP algorithms for decades, implementing one for large-

scale power-law graphs efficiently is still highly challenging today,

because ① a work-efficient SSSP algorithm requires priority-order

traversal of graph data, ② the priority queue needs to be scalable

both in throughput and capacity, and ③ priority-order traversal

requires extensive random memory accesses on graph data.

In this paper, we present SPLAG to accelerate SSSP for power-

law graphs on FPGAs. SPLAG uses a coarse-grained priority queue

(CGPQ) to enable high-throughput priority-order graph traversal

with a large frontier. To mitigate the high-volume random accesses,

SPLAG employs a customized vertex cache (CVC) to reduce off-chip

memory access and improve the throughput to read and update

vertex data. Experimental results on various synthetic and real-

world datasets show up to a 4.9× speedup over state-of-the-art

SSSP accelerators, a 2.6× speedup over 32-thread CPU running at

4.4 GHz, and a 0.9× speedup over an A100 GPU that has 4.1× power

budget and 3.4× HBM bandwidth. Such a high performance would

place SPLAG in the 14th position of the Graph 500 benchmark for

data intensive applications (the highest using a single FPGA) with

only a 45W power budget. SPLAG is written in high-level synthesis

C++ and is fully parameterized, which means it can be easily ported

to various different FPGAs with different configurations. SPLAG is

open-source at https://github.com/UCLA-VAST/splag.

CCS CONCEPTS
• Theory of computation → Shortest paths; • Computer sys-
tems organization→Reconfigurable computing;High-level
language architectures.

KEYWORDS
SSSP, priority queue, cache, power-law, graph, FPGA, HLS

ACM Reference Format:
Yuze Chi, Licheng Guo, and Jason Cong. 2022. Accelerating SSSP for Power-

LawGraphs . In Proceedings of the 2022 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (FPGA ’22), February 27-March 1, 2022,

Virtual Event, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.
org/10.1145/3490422.3502358

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

FPGA ’22, February 27-March 1, 2022, Virtual Event, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9149-8/22/02.

https://doi.org/10.1145/3490422.3502358

1 INTRODUCTION
The graph is a universal data structure that models relationships,

connections, and structures. The single-source shortest path (SSSP)

problem, one of the most important and well-studied graph prob-

lems, finds its prevalent application in road navigation [25], telecom

network routing [47], neural image reconstruction [39, 41], and

social network analysis [4]. Although we have known Dijkstra’s

algorithm [22] and its priority queue–based variants [23, 31] for sev-

eral decades, these algorithms are not easily parallelizable, because

increasing parallelism is often at the cost of increasing the total

amount of work as well. As such, efficient parallelization of SSSP

algorithms are still an active field of research [18, 35, 42, 51, 54, 57].

Compared with CPUs and GPUs, FPGAs have the unique ca-

pability of customizing the control flow and data paths, which

has demonstrated tremendous potential in various application do-

mains, including stencil computations [7, 8, 19, 38], neural net-

works [33, 52, 56], and general graph algorithms [5, 28, 55]. This

makes the FPGA a naturally good candidate platform for SSSP accel-

eration, since the high-throughput on-chip priority queues [2, 36]

enable effective control over the trade-off between parallelism and

the amount of work [1, 35]. However, such on-chip priority queue–

based approach has been applied only to uniform-degree planar

graphs, yet many real-world graphs have skewed degree distribu-

tions, which are often modeled using the power law [14]. Compared

with planar graphs, power-law graphs have a much larger frontier

of active vertices, which requires a priority queue with a much

larger capacity. Even worse, such a capacity requirement increases

rapidly as the size of graph grows, making it infeasible to keep the

priority queue on-chip. This is demonstrated in Figure 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Number of Traversed Edges 1e6

0

20000

40000

N
um

be
r o

f A
ct

iv
e

Ve
rti

ce
s

g500-13 |V|=8.1k |E|=131k
g500-14 |V|=16k |E|=262k
g500-15 |V|=33k |E|=524k
road-ny |V|=264k |E|=367k
road-col |V|=436k |E|=529k
road-fla |V|=1.1M |E|=1.4M

Figure 1: Change of the number of active vertices as edges
are traversed. The g500 graphs are power-law graphs and the
road graphs are planar graphs.

Another challenge to efficiently implement priority queue–based

SSSP algorithms is that priority-order graph traversal prohibits

many reordering techniques used in many graph accelerators [5,

16, 17, 28, 49, 58], which are vitally important to reducing external

memory traffic and achieving high performance. As such, many

graph accelerators [5, 28, 58] implement the Bellman-Ford algo-

rithm [50] that does not require a priority queue at all. However,

these accelerators work best for algorithms whose amount of work

1

https://github.com/UCLA-VAST/splag
https://doi.org/10.1145/3490422.3502358
https://doi.org/10.1145/3490422.3502358
https://doi.org/10.1145/3490422.3502358

is insensitive to the traversal order (e.g., SpMV and PageRank). For

SSSP, the total amount of traversed edges (i.e., amount of work)

can be very different with different traversal orders. We will show

in Section 4.4 that, while the Bellman-Ford algorithm is good for

parallelization and raw traversal throughput, its highly redundant

edge traversal leads to a poorer overall performance for SSSP.

In this paper, we present a new architecture called SPLAG to

accelerate SSSP for power-law graphs. Our contributions include:

• We present a coarse-grained priority queue (CGPQ) that manages

the off-chip memory with an on-chip priority queue and on-

chip buffers. The CGPQ enables high-throughput priority-order

traversal for large-scale power-law graphs.

• We design a customized vertex cache (CVC) to reduce the amount

of random off-chip memory traffic required by the priority-order

graph traversal. By providing application-specific push and pop

operations instead of general-purpose read and write operations,

the CVC also reduces the amount of on-chip memory traffic.

• We implement a parallel variant of Dijkstra’s algorithm on the

FPGA with both high graph traversal throughput and high work-

efficiency using the CGPQ and the CVC. Written in high-level

synthesis (HLS) and open-source at https://github.com/UCLA-
VAST/splag, one can easily port SPLAG to another FPGA.

• We evaluate SPLAG using both synthetic and real-world datasets

and compare it with state-of-the-art SSSP systems. Using all 32

HBM channels on the Alveo U280 FPGA, SPLAG demonstrates up

to 763 MTEPS throughput, a 4.9× speedup over state-of-the-art

accelerators, a 2.6× speedup over multi-thread CPU, and a 0.9×

speedup over an A100 GPU that has 4.1× power budget and 3.4×

HBM bandwidth. Evaluated using the Graph 500 [46] benchmark

for data-intensive applications, SPLAG could be placed in the

14th position with only a 45 W power consumption.

2 BACKGROUND AND RELATEDWORK
Given a directed graph

1 𝐺 = (𝑉 , 𝐸) where each edge 𝑒𝑖, 𝑗 ∈ 𝐸 has a

non-negative
2
weight𝑤𝑖, 𝑗 ≥ 0, a path 𝑃 is a sequence of vertices

𝑃 = (𝑣1, · · · , 𝑣𝑛) ∈ 𝑉 × · · · ×𝑉 such that 𝑣𝑖 and 𝑣𝑖+1 are connected
by an edge 𝑒𝑖,𝑖+1 ∈ 𝐸 for 1 ≤ 𝑖 < 𝑛. Such a path is called a path

from 𝑢 = 𝑣1 to 𝑣 = 𝑣𝑛 . The shortest path between 𝑢 and 𝑣 is the

path that minimizes the distance from 𝑢 to 𝑣 , i.e.,
∑𝑛−1
𝑖=1 𝑤𝑖,𝑖+1. The

single-source shortest path (SSSP) problem aims to find the shortest

path from a given vertex 𝑢 (called the root) to all vertices in the

graph. That is to say, for each vertex 𝑣 ∈ 𝑉 , we not only need to

find the shortest distance from 𝑢, but also the sequence of vertices

that connects 𝑢 to 𝑣 . This can be effectively represented by storing

the parent (𝑣𝑖−1) of each 𝑣𝑖 in the output.

2.1 Single-Source Shortest Path Algorithms
Dijkstra’s algorithm [22] keeps two sets of vertices, the visited set

and the active set. Initially, the visited set is empty, and the active

set contains only the root vertex. All vertices are initialized with

a tentative distance of∞, except that the root has distance 0. The

algorithm iteratively removes vertex 𝑢 with the minimum distance

1
An undirected graph is modeled as a directed graph with bidirectional edges.

2
Dijkstra’s algorithm and its variants, including SPLAG, cannot be used on negative-

weighted graphs. In practice, the edge weights represent distances, and are often

non-negative by definition, e.g., network latency, strength of connection, etc.

from the active set, traverses the neighbors of 𝑢, and moves 𝑢 to the

visited set. For each neighbor 𝑣 of 𝑢, a new tentative distance can

be generated by adding the edge weight to the tentative distance of

their parent vertex 𝑢. If this new tentative distance is smaller than

the previously known distance, 𝑣 will get a new tentative distance.

If 𝑣 is not in the active set nor the visited set, it will be moved to the

active set. This compare-and-update operation is called relaxation.

The algorithm terminates when the active set is empty.

The original Dijkstra’s algorithm uses a list to store the active ver-

tices, which necessitates Θ(|𝑉 |) time to find the minimum-distance

vertex. This can be improved by using a priority queue to store

the active vertices, which reduces the time complexity of this step

to Θ(log |𝑉 |) [23, 31]. If all weights are small integers bound by

a constant 𝐶 , Dial’s algorithm [21] can further decrease this time

complexity to Θ(𝐶) with a bucket queue. Dijkstra’s algorithm and

its priority queue–based variants guarantee each edge is visited at

most once, however, at the cost of being hard to parallelize, since

edges from only one vertex can be relaxed at a time.

The Bellman-Ford algorithm [50] employs a different and paral-

lelizable approach to solve the SSSP problem. Instead of selecting the

edges from the minimum active vertex for relaxation, this algorithm

traverses and relaxes all edges iteratively. Allowing parallel relax-

ation on all vertices enables massive parallelism, although doing so

will relax each edge many times and thus is work-inefficient. Unlike

Dijkstra’s algorithm and its variants, the Bellman-Ford algorithm

can handle negative weights and detect negative cycles. However,

its worse-case time complexity of Θ(|𝑉 | |𝐸 |) makes it highly ineffi-

cient when all the edge weights are non-negative, which is quite

common in real-world applications.

The trade-off between parallelism and work-efficiency has mo-

tivated many researchers. The “eager” Dijkstra’s algorithm [20]

exposes more parallelism by relaxing edges in parallel from more

than one vertex with minimal distances. Crauser et al. [15] further

define heuristics to decide edges from how many vertices should be

relaxed in parallel. ∆-stepping [42] and its variants [18, 54] general-

ize Dial’s algorithm [21] by dividing the active vertices into buckets

based on their distances and only select active vertices from the

first non-empty bucket with the smallest distances.

2.2 Other Shortest Path Problems
The single-source shortest path problem is not the only possible

type of shortest path problems. In fact, we can define four shortest

path problems on a given graph 𝐺 :

• The single-pair shortest path problem finds the shortest path from

a given source vertex 𝑢 to a given destination vertex 𝑣 .

• The single-source shortest path problem finds the shortest path

from a given vertex 𝑢 to all vertices in the graph.

• The single-destination shortest path problem finds the shortest

path from all vertices to a given vertex 𝑣 in the graph.

• The all-pairs shortest path problem finds the shortest path be-

tween all pairs of vertices.

The single-pair shortest path problem can be solved using Dijk-

stra’s algorithm with an early termination condition. For multi-

ple single-pair shortest path queries on the same graph, one can

solve them more efficiently by pre-computing the SSSP of some

2

https://github.com/UCLA-VAST/splag
https://github.com/UCLA-VAST/splag

selected landmarks [25]. The single-destination shortest path prob-

lem can be reduced to SSSP by reverting the direction of edges. The

all-pairs shortest path problem utilizes a different algorithm than

SSSP [3]. However, due to its Θ(|𝑉 |3) time complexity, a complete

solution to the all-pairs shortest path problem is often computa-

tionally intractable for large-scale graphs, in which cases SSSP of

selected/sampled vertices can be used [4]. Altogether, solving the

SSSP problem efficiently can be helpful for all four types of shortest

path problems. We will focus on SSSP in the rest of this paper.

2.3 Single-Source Shortest Path Accelerators
2.3.1 Dijkstra’s Algorithm Accelerators. Takei et al. [51] accelerates
the original Dijkstra’s algorithm and parallelizes both relaxation

and the linear search for the minimum active vertex with a SIMD

architecture. Lei et al. [35] implements Dijkstra’s algorithm with

an on-chip systolic priority queue [36]. Since the systolic priority

queue operates on every data element on each clock cycle, it can-

not leverage dense on-chip storage elements (e.g., BRAMs) and its

capacity does not scale well. A two-level linear-search structure is

used when the number of active vertices grows beyond the capacity

of the queue. Chronos [1] exploits massive speculative parallelism

and can implement the eager version of Dijkstra’s algorithm effi-

ciently. Chronos uses an on-chip pipelined heap [2] to store the

active vertices, which scales better than the systolic priority queue

but still is limited by the size of on-chip storage. Only planar graphs

are evaluated for the above accelerators.

2.3.2 Bellman-Ford Algorithm Accelerators. HitGraph [58] and its

earlier version [57] implement an edge-centric graph accelerator.

Leveraging the larger sequential bandwidth, HitGraph writes the

intermediate relaxation results to DRAMwhen generated and reads

them back when needed. ThunderGP [5] is an HLS-based graph pro-

cessing template that implements highly-parallel graph accelerators

under the vertex-centric gather-apply-scatter model. Unlike Hit-

Graph, ThunderGP updates on-chip vertices directly without gener-

ating off-chip intermediate results. GraphLily [28] is an HLS-based

graph linear algebra overlay implemented on an FPGA equipped

with high-bandwidth memory (HBM). GraphLily can implement

the Bellman-Ford algorithm along with other graph linear algebra

algorithms without reprogramming the FPGA.

In summary, all Dijkstra’s algorithm accelerators are evaluated

using uniform-degree planar graphs only and cannot handle power-

law graphs well due to the demanding requirement of the priority

queue capacity (Figure 1). The Bellman-Ford algorithm accelerators

are evaluated using large-scale power-law graphs, but their work-

efficiency is overlooked. Only the raw edge traversal throughput

is reported, which demonstrates the performance of the graph

processing system, but not the algorithm itself. Even worse, to

reduce the bandwidth requirement, none of the accelerators records

the parent vertex together with the shortest distance. Without the

parent vertex as part of the output, we will not be able to construct

the shortest path tree out of the result, which reduces the usefulness

of the result. Table 1 summarizes the related work.

3 THE SPLAG ACCELERATOR
SPLAG aims to enable high-throughput and work-efficient SSSP

queries for large-scale power-law graphs. This is achieved using

Table 1: Summary of related work. MTEPS measures the al-
gorithm throughput,which is defined as the number of undi-
rected edges in the connected component divided by the exe-
cution time. Since some systems did not report the execution
time, an upper-bound estimation (Section 4.4) is listed here.

System Lang.
Work-

eff.?

Power-

law?
Priority queue? Vertex cache? MTEPS

Chronos [1] RTL Yes No P-heap [2] App.-agnostic 360

GraphLily [28] HLS No Yes No Scratchpad <232

HitGraph [58] RTL No Yes No Scratchpad 46.9

Lei et al. [35] RTL Yes No ExSAPQ [35] No 9.2

Takei et al. [51] RTL Yes No No On-chip only 0.4

ThunderGP [5] HLS No Yes No Scratchpad <122

SPLAG HLS Yes Yes CGPQ (Sec. 3.2) CVC (Sec. 3.3) 763

the architecture shown in Figure 2. The whole SPLAG accelerator

is composed of three major components:

SPLAG (on-chip)

CGPQ
vertex w/ new
dist. < knownCVCEdge Fetcher

Edge Memory
(off-chip)

Vertex Memory
(off-chip)

Spill Memory
(off-chip)

vertex w/
dist. ≤ known

vertex w/
min. dist.

vertex w/
new dist.

Bank 1

Bank 0

Bank 1

Bank 0

Partition 1

Partition 0

Figure 2: Architecture overview of the SPLAG accelerator.

• The coarse-grained priority queue (CGPQ) implements a high-

throughput bucket-based priority queue that is scalable to a large

capacity by buffering active vertices on-chip and storing exces-

sive vertices in the off-chip spill memory as fixed-size chunks.

Section 3.2 will provide more details about the CGPQ.

• The customized vertex cache (CVC) provides high-throughput

access to the vertex data, which are initially stored in the off-

chip vertex memory. Unlike a standard cache with read and write

interfaces, the CVC provides application-specific interfaces for

updating vertices and filtering redundant updates. Section 3.3

will review the internals of the CVC.

• The edge fetcher (EF) traverses neighbors of an active vertex and

calculates the new tentative distance. The off-chip edge memory

stores the edge list in the compressed sparse row (CSR) format.

Section 3.4 will discuss the edge fetcher.

To enable concurrent processing, we partition all the three major

components internally. We use multi-stage switch networks [34]

to improve the clock frequency without sacrificing the through-

put [11] when all-to-all concurrent communication is required.

Besides the three major components, the SPLAG accelerator also

contains a dispatcher responsible for injecting the first active vertex,

controlling program termination, and collecting statistics. The host

program initializes the vertex and edge memory.

3.1 The SPLAG Algorithm
The SPLAG architecture implements a variant of Dijkstra’s algo-

rithm, shown in Algorithm 1. The algorithm is designed to expose

as much parallelism as possible while minimizing the amount of

work. It exploits two levels of parallelism by ① relaxing edges from

multiple active vertices at the same time (Line 4 in Algorithm 1),

and ② relaxing multiple edges of the same active vertex at the

same time (Line 7 in Algorithm 1). Moreover, SPLAG executes the

3

Algorithm 1 SPLAG’s variant of Dijkstra’s algorithm.

Require: A graph 𝐺 = (𝑉 , 𝐸) and 𝑟𝑜𝑜𝑡 ∈ 𝑉

Ensure: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 represent the shortest-path tree from 𝑟𝑜𝑜𝑡

1: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 = [{𝑑𝑖𝑠𝑡 = ∞, 𝑝𝑎𝑟𝑒𝑛𝑡 = null }, · · ·]
2: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 [𝑟𝑜𝑜𝑡] = [{𝑑𝑖𝑠𝑡 = 0, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑟𝑜𝑜𝑡}]
3: 𝑞𝑢𝑒𝑢𝑒 = [{𝑖𝑑 = 𝑟𝑜𝑜𝑡, 𝑑𝑖𝑠𝑡 = 0, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑟𝑜𝑜𝑡}]
4: while not 𝑞𝑢𝑒𝑢𝑒.empty() in parallel do
5: 𝑢 = 𝑞𝑢𝑒𝑢𝑒.pop() ⊲ CGPQ

6: if 𝑢.𝑑𝑖𝑠𝑡 ≤ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 [𝑢.𝑖𝑑] .𝑑𝑖𝑠𝑡 then ⊲ CVC

7: for all 𝑒 = 𝑢.𝑖𝑑 → 𝑣𝑖𝑑 ∈ 𝐸 in parallel do ⊲ Edge Fetcher

8: if 𝑣𝑖𝑑 ≠ 𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 then ⊲ Edge Fetcher

9: 𝑑 = 𝑢.𝑑𝑖𝑠𝑡 + 𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ⊲ Edge Fetcher

10: if 𝑑 < 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 [𝑣𝑖𝑑] .𝑑𝑖𝑠𝑡 then3 ⊲ CVC

11: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 [𝑣𝑖𝑑] = {𝑑𝑖𝑠𝑡 = 𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢.𝑖𝑑} ⊲ CVC

12: 𝑞𝑢𝑒𝑢𝑒.push({𝑖𝑑 = 𝑣𝑖𝑑, 𝑑𝑖𝑠𝑡 = 𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢.𝑖𝑑}) ⊲ CGPQ

algorithm asynchronously, which means the next iteration of the

outer loop (Line 4) can start before the previous one finishes, avoid-

ing load imbalance caused by skewed degree distribution. This,

however, makes it possible to terminate the program prematurely

because the 𝑞𝑢𝑒𝑢𝑒 may be temporarily empty before active vertices

are pushed to the 𝑞𝑢𝑒𝑢𝑒 in Line 12. To solve this problem, we delay

the program termination by a short, fixed amount of clock cycles

to make sure any in-progress operation has been completed.

Highly parallel execution of Dijkstra’s algorithm may lead to

highly redundant amount of work. That is, the number of edge

traversal may be greater than the number of edges in the connected

component. SPLAG reduces the amount of work using the condi-

tional statement shown in Line 6 of Algorithm 1. It can filter out

vertices that are updated many times. For example, for an SSSP

query from root vertex A on the graph shown in Figure 3, vertex

A generates a path to D with a tentative distance of 8 and vertex

B generates a path to D with a tentative distance of 3+2=5. With-

out Line 6 in Algorithm 1, neighbors of vertex D will be traversed

twice because D will be popped twice in Line 5 with two different

distances. With Line 6 and the priority queue, vertex D with the

smaller tentative distance 5 will be popped first, and the second pop

will be filtered out because a smaller distance is already known.

3

8

A

3

1C 5D

2

B

3

E

Figure 3: A graph with 5 vertices and 7 edges.

To further reduce redundant edge traversal, SPLAG applies an-

other optimization named never-look-back. Noticing that a vertex

always has a smaller distance than its children in the SSSP tree,

SPLAG skips the parent of a vertex 𝑣 when it traverses the neigh-

bors of 𝑣 . For example, for an SSSP query from root vertex A in

Figure 3, A generates a path to B with tentative distance 3 and

parent A. When SPLAG traverses neighbors of B, it will skip A and

only traverse C, D, and E, since A is the parent of B, and we know

A must already have a smaller distance than B.

3
Line 10 and Line 11 must be atomic. The CVC takes care of this in SPLAG.

3.2 The Coarse-Grained Priority Queue
A high-throughput and work-efficient SSSP accelerator for power-

law graphs requires high-throughput priority-order graph traversal.

Therefore, there are two design objectives for the priority queue: ①
the priority queue must have a large capacity and utilize off-chip

memory efficiently, and ② the priority queue must support high
throughput push and pop operations. In this section, we present

our solution named the coarse-grained priority queue (CGPQ).

Noticing that a strict priority queue exposes too little parallelism

and is not necessary for correctness, we take a coarse-grained

bucket-based approach to achieve the two design objectives. Using

a pre-selected ∆, we can divide the active vertices into many buck-

ets based on the distance from the root, and, e.g., store a vertex with

tentative distance 𝑑 in bucket

[
𝑑
Δ

]
. Vertices in the same bucket are

considered to have the same priority and can be accessed in simple

first-in-first-out (FIFO) order.

While it seems trivial to implement such a simple bucket-based

CGPQ, the dynamic nature of the SSSP problem actually imposes

significant challenges: themaximum size of each bucket is unknown

before the program execution. While we can pessimistically reserve

consecutive memory space for each bucket, doing so will likely

result in a significant waste of memory since the overall utilization

of memory would be low, which limits the scalability in terms

of capacity. Figure 4 shows an example of how the sizes of 32

buckets change as edges are traversed. We can see that different

buckets are utilized differently. If we reserve memory based on

the maximum size of all the buckets, 63% of the reserved memory

will be unnecessary. In fact, we must reserve even more because

we must account for the worse case among all SSSP queries on all

datasets. To avoid such memory waste, one can employ a linked list

to allocate memory space dynamically, but such a data structure

not only has the storage overhead for the node pointers, but also

is slow due to random accesses. A commonly used data structure

that achieves a compromise between a fixed-size array and a linked

list is often called a double-ended queue (deque), which is a linked

list of fixed-size arrays. The use of linked lists, however, are still

inefficient for implementation on FPGA.

0 1 2 3 4
Number of Traversed Edges 1e6

0

2500

5000

Bu
ck

et
 S

iz
e

Figure 4: Sizes of 32 buckets as edges are traversed in the
g500-15 dataset. Each line represents a bucket.

The CGPQ is inspired by the deque data structure. Similar to a

deque, the CGPQ manages off-chip active vertices in a unit of fixed-

size chunks. Unlike a deque, the CGPQ manages the position and

priority of the chunks with an on-chip priority queue, instead of

linked lists. Figure 5 demonstrates how the on-chip chunk priority

queue (CPQ) orchestrates the off-chip memory accesses to enforce

the priority ordering of vertices. While the example shows 4-vertex

chunks, in practice, the chunks are typically hundreds or thousands

of vertices large to make sure the on-chip priority queue does not

4

 off-chip

 on-chip
bucket: 2

position: 0

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

 off-chip

 on-chip
bucket: 0

position: 4

bucket: 2

position: 0

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

 off-chip

 on-chip
bucket: 0

position: 4

bucket: 2

position: 0

bucket: 5

position: 8

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

 on-chip
bucket: 2

position: 0

 off-chip

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

v
er

te
x

bucket: 5

position: 8

① ② ③ ④

Figure 5: An example of the CGPQ orchestrating chunks of vertices. ① Initially the CGPQ contains one chunk of four vertices
stored off-chip and its reference stored on-chip. The on-chip reference stores the bucket number and a pointer to the off-
chip memory position. ② Another chunk of four vertices is added. The new chunk belongs to Bucket 0 and thus has higher
priority. Therefore, it is stored on-chip at a position with a higher priority. The on-chip reference of the old chunk is moved
to a position with a lower priority. Meanwhile, the off-chip memory only needs to append the newly added vertices without
moving existing ones. ③ Another chunk for Bucket 5 is added. ④ The chunk with the highest priority is removed. The chunk
reference is popped from the on-chip priority queue and the pointer is used to read the vertices from the off-chip memory.
On-chip chunk references are reorganized to maintain the priority queue structure while off-chip data are not moved.

overflow. Therefore, the off-chip memory is always accessed in

large chunk of vertices, which guarantees high memory bandwidth

utilization. As such, the CGPQ can scale to a large capacity without

a significant waste of the memory space or bandwidth.

Figure 6 shows the architectural overview of a CGPQ with two

push ports and two pop ports, which allows two vertices to be

pushed and two vertices to be popped in parallel. Each input vertex

will be assigned a bucket by the bucket assigner using a pre-selected

∆. The CGPQ then buffers on-chip at least one chunk of active

vertices for each bucket, enabling high-throughput push and pop

operations. Section 3.2.1 discusses more details about the chunk

buffer and its two-level partitioning mechanism, which further

enables concurrent operations and makes it possible to achieve

our high-throughput design objective. When the buffer is (almost)

full, vertices will be offloaded to the off-chip spill memory as a

whole chunk. The chunk priority queue orchestrates the chunks

between the on-chip chunk buffer and the off-chip spill memory, as

demonstrated in Figure 5. Section 3.2.3 further discusses how we

dynamically and collaboratively schedule the off-chip operations

together with the on-chip push and pop operations. Such dynamic

management allows the memory space to be used in a compact way,

making it possible to achieve our large-capacity design objective.

 CGPQ

 (on-chip)

Chunk

Buffer

Bucket Assigner

Bucket Assigner

Chunk Priority eue Spill Memory (off-chip)

Pop PortPush Port

Pop PortPush Port

Figure 6: A CGPQ with two push ports and two pop ports.
The number of ports can be different for push and pop and
is larger than two in the actual design (Table 3 on page 8).

3.2.1 The Chunk Buffer. The chunk buffer is the key to achieving

highly concurrent push and pop throughput while supporting large

queue capacity. As a priority queue, the two basic operations are

push and pop. To achieve the large-capacity design objective, the

chunk buffermust additionally support the spill and refill operations

to store excessive vertices in the off-chip spill memory. The spill

operation moves a chunk of vertices from the on-chip chunk buffer

to the off-chip spill memory. The refill operation moves a chunk of

vertices from the off-chip spill memory back to refill the on-chip

chunk buffer. To achieve the high-throughput design objective, all

four operations must be able to parallelize.

To support concurrent push operations, the chunk buffer is in-

ternally partitioned by buckets so that different buckets can be

accessed in parallel. This is called inter-bucket parallelism. Figure 7

shows the architecture of the chunk buffer. Since each vertex may

belong to any bucket partition, this requires an all-to-all commu-

nication pattern. After each incoming active vertex is assigned a

bucket and is sent to the chunk buffer, it will first be routed through

the switch network based on its bucket partition ID.

Chunk Buffer (on-chip)

Bucket

Partition 0

Bucket

Partition 1
Refill Port

Switch

Network

Push Port

Push Port

Spill Port

Splier
Pop Port

Pop Port

Figure 7: The chunk buffer in Figure 6. Data paths in bold
transfer multiple data elements in lockstep.

Each bucket has its own on-chip storage in the chunk buffer

called the bucket buffer (BB). Each BB is accessed in FIFO order as

a circular buffer. The chunk buffer maintains the write and read

pointers of each BB. Figure 8 shows the data layout of the chunk

buffer in Figure 7. The numbers in brackets are the array indices of

each vertex in each BB. For example, the first three active vertices

assigned to Bucket 0 will be written to memory positions [0], [1],
and [2] in BB 0 in three clock cycles, which can happen in parallel

when Bucket 1 or Bucket 3 (but not Bucket 2) is being written.

In Figure 7, only one vertex may be routed to each bucket par-

tition. While each bucket partition can in fact consume multiple

vertices in each clock cycle, we do not exploit the parallelism to

push vertices with each bucket partition. The rationale is as follows.

On the one hand, we observe that the incoming vertices are roughly

evenly distributed among all buckets in the beginning of execution

where the push operations are the most intensive. Figure 4 shows

such an example: almost all bucket sizes increase rapidly before

the bucket sizes hit ~500. The switch network can further absorb

temporary unbalances. Therefore, pushing only one vertex to each

bucket partition does not impose a significant throughput decrease.

On the other hand, we observe that unlike pop operations (which

5

URAM Bank

URAM Bank

URAM Width

BB 0

URAM Depth

[
0
]

[
1
]

[
2
]

[
3
]

···

BB 2 ··· Bucket Partition 0

URAM Bank

URAM Bank BB 1

[
0
]

[
1
]

[
2
]

[
3
]

···

BB 3 ··· Bucket Partition 1

Figure 8: Data layout of the chunk buffer in Figure 7. Each
push port requires a bucket partition and each pop port re-
quires a URAM bank, so there are two bucket partitions and
each bucket partition has two banks. Each bucket buffer (BB)
is used as a circular buffer. The numbers in brackets are the
array indices of the vertices in each BB.

we will discuss later), push operations cannot be coalesced and

aligned, since we can never know when/if the next vertex to the

same bucket will arrive. Therefore, each incoming vertex may fall

in any bank in the bucket partition. Unlike the routing problem

among different bucket partitions whose destination is determined

solely by its distance and thus can use a multi-stage switch network,

the bank ID to which a vertex shall be written is determined by

the runtime conditions in the buffer. Restricting the push rate to

each bucket partition not only reduces resource utilization, but also

removes a potential critical path in the whole accelerator. As such,

we only exploit inter-bucket parallelism for push operations.

For pop operations, since we only pop from a single non-empty

bucket with the smallest distance, the inter-bucket parallelism

among different bucket partitions cannot be exploited. Therefore,

we further partition each bucket partition cyclically into URAM

banks so that multiple vertices can be accessed at the same time.

This is called the intra-bucket parallelism. With the intra-bucket par-

allelism, we can then pop multiple vertices from the same bucket in

a single clock cycle. These vertices then go through coalesced data

paths in lockstep and are eventually split into individual data paths.

In Figure 7 and Figure 8, since there are two pop ports, each bucket

partition is divided into two banks and the coalesced data paths are

two-element-wide to match the data rate of pop operations.

Note that a bucket may have fewer valid vertices than the intra-

bucket parallel factor. In such cases, null vertices padding will be

filled in the coalesced data paths. The splitter in Figure 7 detects

and removes the null vertices when sending the coalesced vertices

into individual pop ports. To simplify the logic to determine the

validity of popped vertices, we require that the pop operations are

always aligned; null vertices will be written to the BB in case a pop

operation performs a partial read. For example, let there be three

valid vertices in Bucket 0 in Figure 8 stored in [0], [1], and [2].
The first pop operation will read two vertices from [0] and [1]
respectively, which are aligned to the intra-bucket parallel factor

2. The second pop operation will only read one valid vertex from

[2]. This is not an aligned operation. If we allow such unaligned

operations and later a new vertex is written to [3] in Bucket 0, we

will have to be able to read one single valid vertex from [3] while

marking vertices from other banks null. This complicates the design.

Instead, in case of unaligned operations, we will force alignment

and adjust the write pointer in addition to the read pointer to fill

in the unaligned locations. Using the same example above, when

the second pop operation reads the vertex from [2], it will move

both the read pointer and the write pointer to [4] so that the next

incoming vertex will be stored in [4] instead of [3]. Note that this
alignment enforcement does not sacrifice the maximum capacity

of each circular buffer. As such, unaligned pop operations will only

insert null vertices in higher locations, which simplifies the pop

operation logic without affecting other operations.

Intra-bucket parallelism enables not only concurrent pop opera-

tions, but also faster spill/refill operations by reading from/writing

to all URAM banks in each bucket partition. Figure 7 shows the data

paths for the spill and refill operations. Section 3.2.3 will discuss

how the four operations are scheduled. Note that we cannot guar-

antee each spill/refill operation is aligned. For example, in Figure 8,

the read pointer may point to position [1] when a spill operation

is scheduled, which means the spill operation should read [1] and

[2] in the first clock cycle. This is why we have to partition each

bucket partition into individual memory banks instead of reshaping

the data structure to use a single-bank memory with a wider width.

3.2.2 The Chunk Priority Queue. The chunk buffer is on-chip and

limited in size. To accomplish the large capacity design objective,

when a bucket buffer (BB) is almost full, it will spill to the off-chip

memory. When spilling happens, a chunk reference will be created

with the off-chip memory pointer and the bucket associated with

that chunk. This chunk reference will be pushed into an on-chip

chunk priority queue (CPQ) so that when the BB has enough space,

the off-chip chunks can be refilled in priority order. Figure 5 shows

an example of spilling and refilling. Since each chunk contains

many vertices, the capacity of the CPQ can be much smaller than

the whole CGPQ, and the CPQ can be on-chip only. Since the off-

chip access has a long latency (> 100 ns [13]), a regular binary heap

suffices for the CPQ. Other on-chip priority queue data structures

such as the systolic priority queue or pipelined heap require more

memory banks and are thus less efficient, so we do not use those.

3.2.3 Scheduling the Operations. The potential bank conflicts and

multi-cycle operation of spilling and refilling bring challenges to

schedule the four operations correctly without deadlock. Moreover,

the spill memory is shared by all bucket partitions to maximize the

utilization of the external memory. To avoid deadlock, the general

scheduling rules are: ① always make sure multi-cycle operations,

i.e., spilling and refilling, can finish without indefinite stalling. This

not only simplifies the inter-operation dependency, but also helps

to improve off-chip memory utilization since memory requests will

not be stalled by the chunk buffer; ② prioritize push operations

over pop operations since pop operations may generate more push

operations; ③ each bucket partition only has one read port and one

write port. Details for scheduling each operation are as follows.

The push operation is scheduled on a bucket partition when an

incoming vertex is available on the push port, unless: ① The write

port is occupied by an active refill operation. ② There is insufficient

buffer space for the target bucket. This includes the case when the

BB is full and the case when future refill operations exhaust the

available space. For example, let each chunk contain 4 vertices and

the BB can hold up to 8 vertices. A refill operation is scheduled

when the BB only has 2 vertices. Push operations can be scheduled

before refilling data are fetched from the off-chip memory (which

takes many clock cycles), until there are 4 vertices in the BB. We

will not schedule another push operation when the BB contains 4

vertices since if we do, the refill operation would stall indefinitely

6

when no pop operation is scheduled and the BB does not have

sufficient space for the last vertex.

The pop operation is scheduled for the non-empty BB with the

highest priority, unless: ① The output pop port is full. ② The read

port is occupied by an active spill operation.③ There are insufficient

vertices. ④ The pop operation is unaligned and the write port is

used by a push or refill operation.

A BB is selected for spilling if its size exceeds a pre-defined

threshold (e.g., 3/4 BB capacity) and there is no spilling or refilling

already scheduled (which occupies the off-chip memory). If multiple

BBs are almost full, we start spilling the one with the lowest priority.

Once a BB is scheduled for spilling, the whole chunk must be moved

to the off-chip memory, which takes multiple clock cycles. That BB

will continue the spilling operation in the following clock cycles

unless the memory channel is busy.

The top bucket in the CPQ is selected for refilling if its size is

below a pre-defined threshold (e.g., 1/4 BB capacity), and there is no

spilling already scheduled. Since there is a long latency between the

off-chip memory read request and the data response, we allow at

most one refilling operation to be scheduled while another one is in

process, which can help to hide this long latency. Once scheduled,

the refilling operation will continue in the follow clock cycles unless

the memory channel is not ready with the appropriate data.

The above scheduling mechanism guarantees that spilling and

refilling operations will not block indefinitely. Moreover, given a

finite number of push operations and properly chosen thresholds,

spilling and refilling operations will be scheduled for finite times,

all of which will eventually complete. Therefore, assuming the

spill memory is sufficiently large, spill operations will eventually

unblock push operations blocked by insufficient buffer space, so

push operations will not block indefinitely either. As a result, the

rest of the accelerator is always able to make progress, which will

eventually unblock pop operations blocked by full output. This

means none of the four operations will block indefinitely and the

scheduling is deadlock-free.

3.3 The Customized Vertex Cache
With a high-throughput and large-capacity CGPQ, we still need a

carefully designed accelerator that can keep up with the through-

put. The priority-order graph traversal generates extensive random

memory accesses that are infeasible to reorder for better off-chip

bandwidth utilization, making it even more challenging to create

a fast SSSP accelerator. We could employ a classic memory cache

to mitigate the random accesses on the vertex data, but it would

produce lower quality of results due to its application-agnostic

nature. Noticing that the tentative distance of each vertex mono-

tonically decreases, we can take advantage of this property and

simplify the accelerator design. In SPLAG, we create the customized

vertex cache (CVC) to help ① reduce the off-chip memory traffic

by caching vertex data on-chip, and ② reduce on-chip memory

requests by taking advantages of the fact that the tentative distance

of each vertex is monotonically decreasing. The CVC provides two

basic operations: ① The updating operation consumes as input a

vertex with a new distance and its corresponding parent vertex ID.

The CVC updates the tentative distance and the tentative parent of

a vertex if and only if the input distance is smaller than the existing

value. If the update happens, the updated vertex is pushed to the

CGPQ. ② The filtering operation takes as input a vertex popped

from the CGPQ. The CVC compares the tentative distance of the

input and the existing value and checks if the input is “stale”, i.e.,

its tentative distance has been updated to a smaller value. Only if

the input vertex is not stale, will the CVC forward the input from

the CGPQ to the edge fetcher to traverse its neighbors.

 Customized Vertex Cache (on-chip)

Vertex

Memory

Bank 1

CVC Bank 0

Vertex

Memory

Bank 0

Switch
Network for

Updating Switch
Network for

Filtering
CVC Bank 1

from CGPQ
Pop Ports

to CGPQ
Push Ports

from Edge
Fetcher

to Edge
Fetcher

Vertex
Memory
(off-chip)

Figure 9: A customized vertex cache with two banks. Both
the on-chip and off-chipmemory are partitioned into banks.
Vertices are cyclically assigned to each bank. The two switch
networks route requests based on the bank ID.

Figure 9 shows the architecture of a CVC. For high-throughput

memory accesses, the vertices are cyclically partitioned into mul-

tiple banks. Each CVC bank has two pairs of ports, one pair for

updating and another for filtering. The updating ports are con-

nected to the edge fetcher, which is responsible for generating

vertices with new tentative distances. Since each vertex may have

neighbors in any CVC bank, a switch network is used to route the

updating inputs to the correct bank. Similarly, the filtering ports

are connected to the CGPQ and a switch network is used to route

the filtering inputs to the correct bank.

The CVC is fully pipelined. Each CVC bank can serve one request

per cycle on hit. The initiation interval for miss requests is two,

because it takes one cycle to send and another cycle to receive

the off-chip memory request. The memory requests are pipelined,

and their long latency can be hidden by overlapping them with

each other. Each CVC bank implements a direct-mapped write-

back cache. We do not employ a set-associative cache since the hit

rate improvement does not make up the frequency degradation

caused by its complexity. Each cache entry keeps a dirty bit to

indicate whether its content should be written back on cache miss

or program termination. Each entry also keeps a writing bit to

indicate that its content is being written back, and another dirty

cache miss must stall until the write finishes.

Coordinating memory reads from DRAM is more complicated

than writes, because both update requests and filter requests can

generate DRAM reads. On cache miss, we store the tentative dis-

tance and parent in the incoming vertex as the tentatively known

data, and do not generate the output until the off-chip data are

available. The CVC treats off-chip read caused by updating and

filtering differently when they arrive, therefore each cache entry in

the CVC has two different reading states. Figure 10 shows the finite-

state machine of a CVC entry for memory reads. When an off-chip

read for updating finishes, the CVC compares the distances and

generates an update if the incoming vertex has a smaller distance.

If another updating request arrives for the same vertex before the

read data arrive, the cache entry is updated on-chip to keep only

7

update

read data

miss (filter)

reading

for

updating

hit

miss (update)

ready

hit

(other-

wise)

read data hit

(other-

wise)

reading

for

filtering

hit (filter req. dist. ≤ known dist.)

hit (update req. dist. < known dist.)

Figure 10: The finite-state machine for memory reads in the
CVC. The initial invalid state can only transfer to reading
for updating because each vertex cannot be filtered before
being updated first. Dirty and writing states can bemanaged
independent of the states for reading and are not included
in the figure. Miss on reading will stall the request until the
request until the entry is no longer reading, so there is no
state transition from reading states on miss.

the smallest tentative distance. This application-specific optimiza-

tion reduces on-chip memory traffic while hiding off-chip memory

latency. When an off-chip read for filtering finishes, the CVC com-

pares the distances and discards the request if the incoming vertex

has a greater distance (which means the popped vertex is “stale”).

If another filtering request arrives for the same vertex before the

read data arrive, the cache entry is updated on-chip to keep only

the smallest tentative distance. If an updating request arrives when

an entry is reading for a filtering request, the CVC compares the

distances and marks the purpose of the reading updating if the up-

dating request has a smaller distance. This is because if the updating

request has a smaller distance, the filtering request would become

stale and should be discarded. Otherwise, the updating request is

not generating an update and the filtering request should continue.

Similarly, if a filtering request arrives when an entry is reading for

an updating request, the CVC compares the distances and marks the

purpose of the reading filtering if the filtering request’s tentative

distance is smaller than or equal to the updating request.

3.4 The Edge Fetcher

 Edge
 Fetcher
 (on-chip)

 Edge
 Memory
 (off-chip)

Edge

Memory

Bank 1

Edge Reader #0

Edge

Memory

Bank 0

Edge Reader #1
from Vertex

Cache

to Vertex

Cache

Distance PE #1

Distance PE #0

Figure 11: Edge fetcher with two banks. Each bank stores
edges whose vertices in the corresponding vertex partition.
Bold lines are coalesced data paths that transfer multiple
vertices in lockstep.

The edge fetcher traverses neighbors of active vertices filtered

by the CVC and calculates the new tentative distances of the neigh-

bors. Figure 11 shows the architecture of the edge fetcher. The edge

fetcher exploits two levels of parallelism: ① the edges are parti-

tioned into multiple banks based on the source vertex ID so that

neighbors of different vertices are traversed at the same time, and ②
the edges are coalesced into wide vectors so that multiple neighbors

Table 2: Graph datasets evaluated on SPLAG. 𝑑max and 𝑑avg
denote the maximum and average degree, respectively.

Dataset |𝑉 | |𝐸 | 𝑑max 𝑑avg Source

amzn 2.1M 5.8M 12k 2.7 Amazon product ratings [45]

dblp 540k 15M 3.3k 28 DBLP Paper Coauthors [24]

digg 872k 4.0M 31k 4.5 Users from digg.com [48]

flickr 2.3M 33M 34k 14 Flicker users [43]

g500-𝑁 2
𝑁

2
𝑁+4

2
0.6𝑁+5

16 Graph 500 datasets [46]

hlwd-09 1.1M 58M 12k 50 Actor collaboration [48]

orkut 3.0M 106M 28k 36 Orkut social network [48]

rmat-21 2.1M 91M 214k 44 A Kronecker graph [37]

wiki 274k 2.9M 3.4k 11 Wiki article–word graph [48]

youtube 3.2M 12.2M 130k 3.8 YouTube users [44]

are traversed at the same time. The edge fetcher is fully pipelined

without turnaround time for different input vertices, meaning if

there are no bubbles in the input vertices, the edge fetcher will not

insert any bubbles to the output (unless the off-chip memory does

not keep up with the data rate).

4 EVALUATION
We evaluate SPLAG with both synthetic and real-world graph

datasets. Table 2 shows the details of the datasets. All graphs are

undirected. For each dataset, we sample 64 vertices that are con-

nected to at least one other vertex and report the harmonic mean

since the metrics are ratios. All experimental results are collected

from on-board execution. Performance counters are inserted to the

accelerator to collect the relevant metrics.

We implement SPLAG using an open-source extension to HLS

C++, TAPA [10], to leverage the convenient peeking interfaces,

fast software simulation [6, 12], asynchronous memory interfaces,

simplified host-kernel interfaces, and coarse-grained floorplan-

ning [26, 27]. Our implementation targets the Alveo U280 board

with 32 high-bandwidth memory (HBM) channels. Table 3 summa-

rizes the design parameters. We determine the design parameters as

follows: to maximize the utilization of the switch networks, we only

select powers of 2 for #bank and #HBM. We allocate as many #HBM

as possible to CVC for its intensive random accesses, and evenly

distribute the rest between EF and CGPQ. For CVC, capacity/bank

maximizes the URAM utilization. For EF, coalescing factor matches

#bank of CVC and EF. For CGPQ, #port matches #bank of CVC. CPQ

capacity and #bucket are maximized without exceeding the timing

critical path in CVC. Chunk size matches the capacity of HBM and

CPQ. BB capacity doubles the chunk size. Spill (refill) threshold is

empirically chosen as ¾ (¼) of BB capacity.

Table 3: Design parameters of the SPLAG accelerator.

CGPQ
#Push Port 16 BB Cap. 2048 #HBM 8

#Pop Port 16 Spill Thre. 1536 #Bucket 128

Chunk Size 1024 Refill Thre. 512 CPQ Cap. 256k

CVC Capacity/Bank 64k #Bank 16 #HBM 16

EF Coalescing Fac. 2 #Bank 8 #HBM 8

We use Vitis 2021.1 for hardware implementation. The post-

implementation reports suggest that the whole accelerator, includ-

ing the Vitis shell platform, utilizes 75% CLBs, 6.3% DSPs, 14%

BRAMs, and 83% URAMs with a 45W power budget (including

8

am
zn

db
lp

di
gg

fli
ck

r
g5

00
-1

5
g5

00
-1

6
g5

00
-1

7
g5

00
-1

8
g5

00
-1

9
g5

00
-2

0
g5

00
-2

1
g5

00
-2

2
hl

w
d-

09
or

ku
t

rm
at

-2
1

w
ik

i
yo

ut
ub

e

Dataset

0

50

100

Sp
ill

ed
 V

er
tic

es
 (%

)

Figure 12: Percentage of spilled vertices among all vertices
pushed to the CGPQ.

am
zn

db
lp

di
gg

fli
ck

r
g5

00
-1

5
g5

00
-1

6
g5

00
-1

7
g5

00
-1

8
g5

00
-1

9
g5

00
-2

0
g5

00
-2

1
g5

00
-2

2
hl

w
d-

09
or

ku
t

rm
at

-2
1

w
ik

i
yo

ut
ub

e

Dataset

0

5

CV
C

Id
lin

g
(%

)

Figure 13: Percentage ofCVC idling. Low idling suggests that
the CGPQ can pop vertices with a high throughput.

the HBM). There are 162840 CLBs, 9024 DSPs, 2016 BRAMs, and

960 URAMs available. The accelerator is clocked at 130MHz with

critical paths caused by the extensive usage of URAMs in the CVC.

4.1 Evaluation of the CGPQ
Figure 12 shows the percentage of spilled vertices among all vertices

pushed to the CGPQ. We can see that for large datasets, almost all

active vertices are spilled to the off-chip memory. Moreover, the

scaling from g500-15 to g500-22 matches the trend of active vertices

shown in Figure 1 on page 1. This suggests that our CGPQ design

has accomplished the large-capacity design objective.

Figure 13 shows the percentage of idling cycles of the CVC. Note

that CVC idling can be caused by either empty CGPQ or insufficient

pop throughput; the performance counters cannot tell the reason

for idling. Moreover, the CVC never stalls because the CGPQ push

port is full in any of the evaluations. <8% CVC idling and 0% CVC

stalling caused by the CGPQ suggest that our CGPQ design has

accomplished the high-throughput design objective.

4.2 Evaluation of the CVC
Figure 14 shows the CVC read and write hit rate. We found that the

hit rate highly depends on the number of vertices of the dataset:

the g500-𝑁 series show a clear dropping trend when vertex count

increases, and larger datasets (e.g., amzn, flickr, orkut, youtube)

tend to have lower hit rate in general. Nevertheless, even for the

largest datasets, the read and write hit rate is still higher than 80%

and 50%, indicating effective caching.

Figure 15 shows the percentage of traversed edges that generated

an active vertex with a new distance. We can see that CVC filtering

is very effective in reducing redundant edge traversal.

am
zn

db
lp

di
gg

fli
ck

r
g5

00
-1

5
g5

00
-1

6
g5

00
-1

7
g5

00
-1

8
g5

00
-1

9
g5

00
-2

0
g5

00
-2

1
g5

00
-2

2
hl

w
d-

09
or

ku
t

rm
at

-2
1

w
ik

i
yo

ut
ub

e

Dataset

0

50

100

Ca
ch

e
H

it
Ra

te
 (%

)

Read
Write

Figure 14: Read and write hit rate of the CVC.

am
zn

db
lp

di
gg

fli
ck

r
g5

00
-1

5
g5

00
-1

6
g5

00
-1

7
g5

00
-1

8
g5

00
-1

9
g5

00
-2

0
g5

00
-2

1
g5

00
-2

2
hl

w
d-

09
or

ku
t

rm
at

-2
1

w
ik

i
yo

ut
ub

e

Dataset

0

10

20

A
ct

iv
e

Ve
rti

ce
s (

%)

Processed by edge fetcher
Discarded by CVC filtering

Figure 15: Percentage of active vertices among all traversed
edges. Active vertices are either ① discarded by CVC filter-
ing, or ② processed by the edge fetcher. The rest of traversed
edges did not generate active vertices during CVC updating.

4.3 Overall Evaluation of SPLAG
Figure 16 shows the throughput achieved by SPLAG. The traversal

throughput is defined as the number of traversed edges divided by

the kernel execution time, which reflects the processing capability

of the hardware but not the performance of the algorithm itself.

The traversal throughput counts directed edges because only one

direction can be traversed at a time. The algorithm throughput is

defined as the number of undirected edges in the connected com-

ponent of the root vertex divided by the kernel execution time,

which measures the overall performance of the SSSP algorithm,

including both the graph traversal throughput and the work effi-

ciency. The algorithm throughput metric is used by the Graph 500

benchmark for data intensive applications [46]. We measured 504

MTEPS throughput under this metric using the g500-21 dataset,

which could be ranked at the 14th position of the Graph 500 June

2021 SSSP list [40]. To the best of our knowledge, SPLAG is the

first FPGA accelerator that can achieve such a ranking. The imme-

diate preceding system on that list (at the 13th position) used an

8-node/128-core cluster to achieve 656 MTEPS throughput, while

SPLAG works on a single FPGA board with only 45 W power bud-

get. Beyond the Graph 500 datasets, the dblp dataset achieves the

highest 763 MTEPS algorithm throughput.

Figure 17 further shows the work efficiency achieved by SPLAG.

The work efficiency metric, amount of work, is normalized to the

number of directed edges in the traversed connected component.

Therefore, Dijkstra’s algorithm generally achieves the amount of

work of 1. Thanks to the never-look-back optimization (Section 3.1),

SPLAG can even achieve < 1 amount of work for some datasets.

4.4 Comparison with Other SSSP Systems
Table 4 compares SPLAG against a multi-thread CPU baseline, a

GPU baseline, and three state-of-the-art graph accelerators. The

9

am
zn

db
lp

di
gg

fli
ck

r
g5

00
-1

5
g5

00
-1

6
g5

00
-1

7
g5

00
-1

8
g5

00
-1

9
g5

00
-2

0
g5

00
-2

1
g5

00
-2

2
hl

w
d-

09
or

ku
t

rm
at

-2
1

w
ik

i
yo

ut
ub

e

Dataset

500

1000

1500

Th
ro

ug
hp

ut
 (M

TE
PS

)

Traversal
Algorithm

Figure 16: Throughput achieved by SPLAG. “Traversal”
throughput measures the number of traversed edges over
the kernel execution time. “Algorithm” throughput mea-
sures the number of undirected edges in the connected com-
ponent over the kernel execution time.

am
zn

db
lp

di
gg

fli
ck

r
g5

00
-1

5
g5

00
-1

6
g5

00
-1

7
g5

00
-1

8
g5

00
-1

9
g5

00
-2

0
g5

00
-2

1
g5

00
-2

2
hl

w
d-

09
or

ku
t

rm
at

-2
1

w
ik

i
yo

ut
ub

e

Dataset

0

1

A
m

ou
nt

 o
f W

or
k

Figure 17: Normalized amount of work achieved by SPLAG.
This is defined as the number of traversed edges divided by
the number of directed edges in the connected component.
Lower is better. Some benchmarks have < 1 amount of work
because of the never-look-back optimization (Section 3.1).

CPU baseline is based on the latest Galois [29, 32], which runs the

∆-stepping [42] algorithm. Galois is a well-established concurrent

graph library designed for graph analytics algorithms [29]. We

modified the implementation from Galois to use floating-point

distances and record the parent IDs [30]. The server has two Xeon

Gold 6244 CPUs, which have 32 threads in total running at 4.4 GHz.

The CPU baseline achieves better work efficiency than the Bellman-

Ford accelerators, but is still less efficient than SPLAG due to its

application-agnostic memory system.

The GPU baseline is based on the floating-point version of

ADDS [54]. We modified the implementation from [54] to run on

the Nvidia A100 GPU and record the parent IDs [53]. The GPU

baseline has the highest throughput among all systems (including

SPLAG), although that is achieved using a 1555 GB/s HBM and up

to 186 W power consumption (reported by nvidia-smi), while the
U280 FPGA only has a 460 GB/s HBM and a 45 W power budget

(post-implementation report; xbutil reports lower power).
Previous Dijkstra’s algorithm accelerators were not evaluated

using power-law graphs. All three FPGA accelerators implement

the Bellman-Ford algorithm. We use the performance numbers re-

ported in each paper. Considering the fact that the previous works

do not record the parent vertex ID in the vertex data while SPLAG

does, we halve the traversal throughput of the previous works.

Since ThunderGP [5] and HitGraph [58] use DDR-based FPGAs,

we port SPLAG to a DDR-based FPGA (U250) for fair comparisons.

Because HitGraph is simulated using a smaller chip, we further

Table 4: SPLAG compared against other SSSP systems.

Dataset System Algorithm Hardware
MTEPS SPLAG’s

SpeedupTrav. Algo.

hlwd-09

Galois [32] ∆-stepping [42] Xeon 6244 CPU 1229 211 2.6×
ADDS [54] ADDS [54] A100 40G GPU 31242 1455 0.4×

GraphLily [28] Bellman-Ford [50] U280 FPGA 4670 < 232 > 2.3×
SPLAG SPLAG U280 FPGA 1744 543 1×

ThunderGP [5] Bellman-Ford [50] U250 FPGA 2454 < 122 > 2.6×
SPLAG SPLAG U250 FPGA 756 315 1×

rmat-21

Galois [32] ∆-stepping [42] Xeon 6244 CPU 930 254 1.9×
ADDS [54] ADDS [54] A100 40G GPU 15878 530 0.9×

GraphLily [28] Bellman-Ford [50] U280 FPGA 2823 < 195 > 2.5×
SPLAG SPLAG U280 FPGA 1354 494 1×

HitGraph [58] Bellman-Ford [50] VU5P FPGA 2152 46.9 4.9×
SPLAG SPLAG VU5P FPGA 533 228 1×

restrict the resource usage on U250 for fair comparison. Since Thun-

derGP and GraphLily [28] do not report the absolute execution time,

we calculate the upper-bound of their algorithm throughput based

on a CPU implementation of the Bellman-Ford algorithm [9]. This

CPU implementation applies push-based graph traversal and edges

are traversed only if the vertex is updated in the previous iter-

ation. Due to lower parallelism, push-based traversal usually is

only adopted when the graph traversal frontier is small [28], and

pull-based traversal generates more redundant traversal. Therefore,

our calculation gives a lower-bound of the number of traversed

edges. Still, SPLAG is at least 2.3× faster. Note that the three FPGA

baselines are powerful general-purpose graph processing systems.

Many graph algorithms (e.g., PageRank) are very well-accelerated

by these systems, yet SPLAG is not capable of the same. However,

while they can support some application-specific optimizations like

pruning and early-termination for SSSP, further customization by

SPLAG, especially with efficient support of order-sensitive edge

traversal, leads to better performance at the expense of some lose

of generality.

5 CONCLUSION
We present SPLAG to accelerate the SSSP algorithm for power-law

graphs on FPGAs. Two components in SPLAG are key to achieving

the acceleration: The coarse-grained priority queue (CGPQ) uses an

on-chip priority queue to orchestrate the off-chip memory accesses

and enables high-throughput priority-order graph traversal with

a large queue capacity. The customized vertex cache (CVC) imple-

ments two application-specific operations to reduce the amount

of off-chip memory access and improve the throughput of random

memory accesses imposed by priority-order graph traversal. Ex-

perimental results on various synthetic and real-world datasets on

an HBM-equipped FPGA demonstrate up to 763 MTEPS overall

throughput and a 4.9× speedup over state-of-the-art accelerators.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for their valu-

able comments, Jason Lau and Linghao Song for their help with

the GPU baseline, and Jason Lau for his effort maintaining our

infrastructures. This work is partially supported by the NSF RTML

program (CCF1937599), NIH Brain Initiative (U01MH117079), the

Xilinx Adaptive Compute Clusters (XACC) program, CRISP, one of

six JUMP centers, and support of the CDSC industrial partners
4
.

4https://cdsc.ucla.edu/partners

10

https://cdsc.ucla.edu/partners

REFERENCES
[1] Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient Speculative

Parallelism for Accelerators. In ASPLOS.

[2] Ranjita Bhagwan and Bill Lin. 2000. Fast and Scalable Priority Queue Architecture

for High-Speed Network Switches. In INFOCOM.

[3] Uday Bondhugula, Ananth Devulapalli, James Dinan, Joseph Fernando, Pete

Wyckoff, Eric Stahlberg, and P. Sadayappan. 2006. Hardware/Software Integration

for FPGA-based All-Pairs Shortest-Paths. In FCCM.

[4] Ulrik Brandes and Christian Pich. 2007. Centrality Estimation in Large Networks.

International Journal of Bifurcation and Chaos 17, 07 (2007).

[5] Xinyu Chen, Hongshi Tan, Yao Chen, Bingsheng He, Weng-Fai Wong, and Dem-

ing Chen. 2021. ThunderGP: HLS-based Graph Processing Framework on FPGAs.

In FPGA.

[6] Yuze Chi, Young-kyu Choi, Jason Cong, and JieWang. 2019. Rapid Cycle-Accurate

Simulator for High-Level Synthesis. In FPGA.

[7] Yuze Chi and Jason Cong. 2020. Exploiting Computation Reuse for Stencil

Accelerators. In DAC.

[8] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. 2018. SODA: Stencil with

Optimized Dataflow Architecture. In ICCAD.

[9] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong Yang.

2016. NXgraph: An Efficient Graph Processing System on a Single Machine. In

ICDE.

[10] Yuze Chi, Licheng Guo, Jason Lau, Young-kyu Choi, Jie Wang, and Jason Cong.

2021. Extending High-Level Synthesis for Task-Parallel Programs. In FCCM.

[11] Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong.

2021. HBM Connect: High-Performance HLS Interconnect for FPGA HBM. In

FPGA.

[12] Young-kyu Choi, Yuze Chi, JieWang, and Jason Cong. 2020. FLASH: Fast, ParalleL,

and Accurate Simulator for HLS. TCAD (2020).

[13] Young-kyu Choi, Yuze Chi, Jie Wang, Licheng Guo, and Jason Cong. 2020.

When HLS Meets FPGA HBM: Benchmarking and Bandwidth Optimization. arXiv

2010.06075.

[14] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. 2009. Power-Law

Distributions in Empirical Data. SIAM Rev. 51, 4 (2009).

[15] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. 1998. A Parallelization of

Dijkstra’s Shortest Path Algorithm. In MFCS.

[16] Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. 2016. FPGP: Graph

Processing Framework on FPGA A Case Study of Breadth-First Search. In FPGA.

[17] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and Huazhong

Yang. 2017. ForeGraph: Exploring Large-scale Graph Processing on Multi-FPGA

Architecture. In FPGA.

[18] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. 2014.

Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths. In IPDPS.

[19] Johannes de Fine Licht, Andreas Kuster, Tiziano De Matteis, Tal Ben-Nun, Do-

minic Hofer, and Torsten Hoefler. 2021. StencilFlow: Mapping Large Stencil

Programs to Distributed Spatial Computing Systems. In CGO.

[20] Camil Demetrescu, Andrew Goldberg, and David Johnson. 2009. The Shortest

Path Problem. DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, Vol. 74.

[21] RoBERT B Dial. 1969. Algorithm 360: Shortest-Path Forest with Topological

Ordering. CACM 12, 11 (1969).

[22] E. W. Dijkstra. 1959. A Note on Two Problems in Connexion with Graphs. Numer.

Math. 1, 1 (1959).

[23] M.L. Fredman and R.E. Tarjan. 1984. Fibonacci Heaps And Their Uses In Improved

Network Optimization Algorithms. In FOCS.

[24] Robert Geisberger, Peter Sanders, and Dominik Schultes. 2008. Better Approxi-

mation of Betweenness Centrality. In ALENEX.

[25] Andrew V. Goldberg and Chris Harrelson. 2005. Computing the Shortest Path:

A* Search Meets Graph Theory. In SODA.

[26] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,

Zhiru Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained

Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die

FPGAs. In FPGA.

[27] Licheng Guo, Pongstorn Maidee, Yun Zhou, Chris Lavin, Jie Wang, Yuze Chi,

Weikang Qiao, Alireza Kaviani, Zhiru Zhang, and Jason Cong. 2022. RapidStream:

Parallel Physical Implementation of FPGA HLS Designs. In FPGA.

[28] Yuwei Hu, Yixiao Du, Ecenur Ustun, and Zhiru Zhang. 2021. GraphLily: Acceler-

ating Graph Linear Algebra on HBM-Equipped FPGAs. In ICCAD.

[29] IntelligentSoftwareSystems. 2021. Galois: C++ Library for Multi-Core and Multi-

Node Parallelization. https://github.com/IntelligentSoftwareSystems/
Galois.

[30] IntelligentSoftwareSystems and UCLA-VAST. 2021. Galois: C++ Library for

Multi-Core and Multi-Node Parallelization. https://github.com/UCLA-
VAST/Galois.

[31] Donald B. Johnson. 1977. Efficient Algorithms for Shortest Paths in Sparse

Networks. J. ACM 24, 1 (1977).

[32] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita

Bala, and L. Paul Chew. 2007. Optimistic Parallelism Requires Abstractions. In

PLDI.

[33] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Ja-

son Cong, and Zhiru Zhang. 2019. HeteroCL: A Multi-Paradigm Programming

Infrastructure for Software-Defined Reconfigurable Computing. In FPGA.

[34] Duncan H. Lawrie. 1975. Access and Alignment of Data in an Array Processor.

Transactions on Computers C-24, 12 (1975).

[35] Guoqing Lei, YongDou, Rongchun Li, and Fei Xia. 2016. An FPGA Implementation

for Solving the Large Single-Source-Shortest-Path Problem. Transactions on

Circuits and Systems II 63, 5 (2016).

[36] Charles E. Leiserson. 1979. Systolic Priority Queues. Technical Report.

[37] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and

Zoubin Ghahramani. 2010. Kronecker Graphs: An Approach to Modeling Net-

works. Journal of Machine Learning Research 11 (2010).

[38] Jiajie Li, Yuze Chi, and Jason Cong. 2020. HeteroHalide: From Image Processing

DSL to Efficient FPGA Acceleration. In FPGA.

[39] Rui Li, Muye Zhu, Junning Li, Michael S. Bienkowski, Nicholas N. Foster, Hanpeng

Xu, Tyler Ard, Ian Bowman, Changle Zhou, Matthew B. Veldman, X. William

Yang, Houri Hintiryan, Junsong Zhang, and Hong Wei Dong. 2019. Precise

Segmentation of Densely Interweaving Neuron Clusters Using G-Cut. Nature

Communications 10, 1 (2019).

[40] The Graph 500 List. 2021. June 2021 SSSP. https://graph500.org/?page_id=
944.

[41] Karl Marrett, Muye Zhu, Yuze Chi, Chris Choi, Zhe Chen, Hong-Wei Dong,

Chang Sin Park, X. William Yang, and Jason Cong. 2021. Recut: A Concur-

rent Framework for Sparse Reconstruction of Neuronal Morphology. bioRxiv

2021.12.07.471686.

[42] U. Meyer and P. Sanders. 2003. Δ-Stepping: A Parallelizable Shortest Path Algo-

rithm. Journal of Algorithms 49, 1 (2003).

[43] Alan Mislove, Hema Swetha Koppula, Krishna P. Gummadi, Peter Druschel, and

Bobby Bhattacharjee. 2008. Growth of the Flickr Social Network. In WOSN.

[44] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and

Bobby Bhattacharjee. 2007. Measurement and Analysis of Online Social Networks.

In IMC.

[45] Arjun Mukherjee, Bing Liu, and Natalie Glance. 2012. Spotting Fake Reviewer

Groups in Consumer Reviews. In WWW.

[46] Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. 2010.

Introducing the Graph 500. In CUG.

[47] Larry L. Peterson and Bruce S. Davie. 2010. Computer Networks: A Systems

Approach.

[48] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive Graph Analytics and Visualization. In AAAI.

[49] Zhiyuan Shao, Ruoshi Li, Diqing Hu, Xiaofei Liao, and Hai Jin. 2019. Improving

Performance of Graph Processing on FPGA-DRAM Platform by Two-level Vertex

Caching. In FPGA.

[50] Alfonso Shimbel. 1953. Structural Parameters of Communication Networks. The

Bulletin of Mathematical Biophysics 15, 4 (1953).

[51] Yasuhiro Takei, Masanori Hariyama, and Michitaka Kameyama. 2015. Evaluation

of an FPGA-Based Shortest-Path-Search Accelerator. In PDPTA.

[52] Jie Wang, Licheng Guo, and Jason Cong. 2021. AutoSA: A Polyhedral Compiler

for High-Performance Systolic Arrays on FPGA. In FPGA.

[53] Kai Wang and Yuze Chi. 2021. A Fast Work-Efficient GPU Algorithm for SSSP.

https://github.com/UCLA-VAST/adds.
[54] Kai Wang, Don Fussell, and Calvin Lin. 2021. A Fast Work-Efficient SSSP Algo-

rithm for GPUs. In PPoPP.

[55] Qinggang Wang, Long Zheng, Yu Huang, Pengcheng Yao, Chuangyi Gui, Xiaofei

Liao, Hai Jin, Wenbin Jiang, and Fubing Mao. 2021. GraSU: A Fast Graph Update

Library for FPGA-based Dynamic Graph Processing. In FPGA.

[56] Yichi Zhang, Junhao Pan, Xinheng Liu, Hongzheng Chen, Deming Chen, and

Zhiru Zhang. 2021. FracBNN: Accurate and FPGA-Efficient Binary Neural Net-

works with Fractional Activations. In FPGA.

[57] Shijie Zhou, Charalampos Chelmis, and Viktor K. Prasanna. 2015. Accelerating

Large-Scale Single-Source Shortest Path on FPGA. In IPDPSW.

[58] Shijie Zhou, Rajgopal Kannan, Viktor K. Prasanna, Guna Seetharaman, and Qing

Wu. 2019. HitGraph: High-throughput Graph Processing Framework on FPGA.

TPDS (2019).

11

https://github.com/IntelligentSoftwareSystems/Galois
https://github.com/IntelligentSoftwareSystems/Galois
https://github.com/UCLA-VAST/Galois
https://github.com/UCLA-VAST/Galois
https://graph500.org/?page_id=944
https://graph500.org/?page_id=944
https://github.com/UCLA-VAST/adds

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Single-Source Shortest Path Algorithms
	2.2 Other Shortest Path Problems
	2.3 Single-Source Shortest Path Accelerators

	3 The SPLAG Accelerator
	3.1 The SPLAG Algorithm
	3.2 The Coarse-Grained Priority Queue
	3.3 The Customized Vertex Cache
	3.4 The Edge Fetcher

	4 Evaluation
	4.1 Evaluation of the CGPQ
	4.2 Evaluation of the CVC
	4.3 Overall Evaluation of SPLAG
	4.4 Comparison with Other SSSP Systems

	5 Conclusion
	References

