
HBM Connect: High-Performance
HLS Interconnect for FPGA HBM

Young-kyu Choi, Yuze Chi, Weikang Qiao,
Nikola Samardzic, and Jason Cong

University of California, Los Angeles

High Bandwidth Memory (HBM) becoming
increasingly popular in FPGA boards:

2

• Stratix 10 MX / Alveo U280 HBM boards provides 32
pseudo channels (PCs), each with ~13GB/s BW

3

+ Reconfigurability and energy-efficiency of FPGAs

+ Programming support from high-level synthesis (HLS) tools

https://the-stuingtion-and-hiatt-grey-cinematic-universe.fandom.com/wiki/Luke_Skywalker

Now I am the master
of memory-bound
applications!

<FPGA + HBM + HLS>

…Really?

• Implementation result of memory-bound applications
on Alveo U280

4

PEs compute data in each

PC independently

-> High eff BW

?

PEs need to read/write

from multiple PCs

-> Low eff BW

More evaluation result in Y. Choi, et al., "When HLS Meets FPGA HBM: Benchmarking and Bandwidth Optimization." arXiv preprint arXiv:2010.06075 (2020).

• Reason for the low effective BW:

– 1. Shared links among the built-in switches become a
bottleneck

5

<Alveo U280

Architecture>

Lateral

connectionsFull crossbar

-> Become

bottleneck

• Reason for low effective BW:

– 2. Difficult to infer burst access to multiple PCs in
current HLS programming environment

11 void key_write(hls::stream< ... > & in_fifo,
12 ap_uint<512>* pe0_pc0, pe0_pc1, ... pe0_pc15){
13 while(...){
14 #pragma HLS pipeline II=1
15 {data, bucket_id} = in_fifo.read();
16 switch(bucket_id){
17 case 0 : pe0_pc0[addr0++] = data; break;
18 case 1 : pe0_pc1[addr1++] = data; break;
19 ...
20 case 15 : pe0_pc15[addr15++] = data; break;
21 } }

6

• Data comes in random order

-> Data may be sent to different PC in next iteration

-> AXI burst length of one

• How to solve this problem?

– We propose HBM Connect: a high-performance customized
interconnect (between PEs and the HBM) for HBM FPGA
board

• HLS-based optimization techniques to increase the throughput of AXI
bus masters and switching elements

• High-performance customized crossbar

• Finds the design point with best BW-resource tradeoff

7

?
HBM

Connect

8

• Introduction

• Case Studies

• Design Space and Problem Formulation

• Built-in Crossbar and Custom Crossbar

• AXI Burst Buffer

• Experimental Result

Case Studies
• Case 1: Bucket sort

9

Assumes PC-independent

sorting in the next stage

• Case 2: Merge sort

10

Assumes PC-independent

sorting in the previous stage

(hybrid of bucketing

+ merge sort)

11

• Introduction

• Case Studies

• Design Space and Problem Formulation

• Built-in Crossbar and Custom Crossbar

• AXI Burst Buffer

• Experimental Result

Design Space of HBM Connect

12

PE0
PE1
PE2
PE3

PE15

...

PE4
PE5
PE6
PE7
PE8

SWCH
SWCH
SWCH
SWCH
SWCH
SWCH
SWCH
SWCHPE9

SWCH
SWCH
SWCH
SWCH
SWCH
SWCH
SWCH
SWCH

ABUF
ABUF
ABUF
ABUF
ABUF
ABUF
ABUF
ABUF
ABUF
ABUF

ABUF

...

...

...

CXBAR= {4,3,2,1,0}

Reduces traffic in built-in xbar
ABUF= {256, …, 2, 1, 0}

Increases AXI burst length

unit
switch

......

PC0
PC1
PC2
PC3

PC15

......

PC4
PC5
PC6
PC7

AXI S AXI M

Custom
Crossbar

AXI Burst
Buffers

HBMC/
PHY/HBM

Built-in
Crossbar

Processing
Elements

Problem Formulation

• Assumptions
– Memory-bound application

– HLS kernel in dataflow style (with streaming FIFOs)

– Data is read/written in sequential address to HBM

• Problem :
– Given the data size between all PEs and PCs, find a design space

(CXBAR, ABUF) that maximizes BW2/LUT

• AT2

• Maximize effective bandwidth while using small resource as possible

• BW term is more important than resource term (memory bound
application)

• Metric BW2/LUT may be replaced with BW2/FF or BW2/BRAM

13

14

• Introduction

• Case Studies

• Design Space and Problem Formulation

• Built-in Crossbar and Custom Crossbar

• AXI Burst Buffer

• Experimental Result

Built-in crossbar and HBM

• Single PC benchmarking result

15

Latency:Maximum BW:

* Our HLS HBM benchmarking work is open-sourced at https://github.com/UCLA-VAST/hbmbench

Limitation of Built-in Crossbar

• Many-to-many unicasting BW

– Test configuration: 2x2~16x16 AXI masters x PCs RD/WR

– Test result:

• Severe effective BW reduction in 16x16

16

AXI0

AXI1

AXI2

AXI3

PC0

PC1

PC2

PC3

Ex) 2x2 WR:

Customized crossbar

• Topology of crossbar

– Difficult to route fully-connected crossbar

– Decided to use multistage crossbar composed of 2x2 switches
• Several topologies exist – Omega, Clos, Benes, butterfly, etc

– Chose butterfly network
• Reason: Sends data across many hops of AXI masters in its early stage

-> good LUT-BW tradeoff with just few custom xbar stages

17

• 2x2 switch in HLS

– Problem with typical 2x2 switch
• Can send both input data to output if the data's output ports are

different

• Average throughput for random input : 1.5 elements per cycle

– Proposed solution: mux-demux switch
• Idea: Decompose a 2x2 switch into simple operations to be

performed in parallel

• Can produce 2 outputs per cycle,

if consecutive length of data for output < buffer size
18

Note:

• Buffer implemented as FIFO

• Mux-demux switch (…continued)

– Resource (post PnR) & throughput comparison
• Tested with random input in a standalone Vivado HLS test

• Comparable resource between typical SW vs mux-demux SW

– Complex control in Typ SW

• Better throughput than Typ SW

19

HBM Connect default
configuration

20

• Introduction

• Case Studies

• Design Space and Problem Formulation

• Built-in Crossbar and Custom Crossbar

• AXI Burst Buffer

• Experimental Result

• Conventional HLS coding style: Direct access from
PE to AXI master

– Problem: In bucket sort, two consecutive keys may have
different destination PCs (random order)

• Existing HLS tools do NOT automatically infer burst access to
different PCs

• AXI burst length of one 21

PE0 unit
switch

AXI M0 PC0
PC1
PC2
PC3......

......

time

Dest PC (bucket): 3 2 15 14 11 1 1 7 9 10

• Intuitive solution:

– FIFO-based burst buffer**
• Instantiate burst buffer for each destination PC

• Problem 1: Underutilized BRAM

– Only requires ~32 length burst ↔ BRAM min depth is 512

• Problem 2: Complex routing

– Scatters data to multiple FIFOs and again gathers data to a single
AXI master

• Result: PnR failed

22

AXI M

Read

func

PC

Splitter

…

Write

func

AXI M

PC0

FIFO

burst buffer

(in BRAM)

PC1

PC15PC0

** Called “BICA” in Y. Choi, et al., "When HLS Meets FPGA HBM: Benchmarking and Bandwidth Optimization." arXiv preprint arXiv:2010.06075 (2020).

• 3 problems at hand:

– AXI burst access problem

– BRAM under-utilization problem

– FIFO scatter/gather problem

• Proposed solution: HLS Virtual Buffer (HVB)

– Idea: Share the BRAM as a burst buffer for many
different destination PCs

• Single physical FIFO is shared among multiple virtual channels

– Architecture:

23

(passes burst length &

destination PC info)

(burst write data)

(data with random

dest PCs)

PE & cus

tom xbar
AXI

Master

24

<HLS code>

<Architecture>

• HLS Virtual Buffer (….continued)

Reads input data (random PC),

write to physical buffer

Read data from buffer,

burst write to each PC

Burst length &

destination PC info

• HLS Virtual Buffer (….continued)

– Comparison

– HVB Abstraction (S2S transformation)

25

vir_ch0 = 0;
for(i=0; i<BURST_LEN; i++){
#pragma HLS pipeline II=1

data = pfifo.vfifo_read(vir_ch0);
pe0_pc0[i] = data;

}

Virtual buffer tag

Eff BW higher than

direct access with AXI

burst access

Smaller BRAM usage than FIFO burst

buffer with sharing buffer space

Smaller LUT/FF usage by

sharing physical FIFO

26

• Introduction

• Case Studies

• Design Space and Problem Formulation

• Built-in Crossbar and Custom Crossbar

• AXI Burst Buffer

• Experimental Result

Experimental Result

• Case study 1: Bucket sort

– Varying number of custom crossbar stages

27

More custom crossbar stages

-> less contention on lateral connections

-> higher effective BW

CXBAR=4

-> 1-1 connection between AXI

master and PC

-> Approaches the maximum BW

achievable (206GB/s = 16PCs *

12.9 GB/s)

(baseline)

-> more LUT/FF usage (but less than BW

improvement)

Best

Best

-> fewer output PCs per AXI master -> less

BRAM usage

– BW2/resource metrics

• Case study 2: Merge sort

28

Adding few stages adds only few LUTs

while greatly improving BW
AXI master only communicates with 1 PC

-> Low BRAM usage

Low effective BW when

burst length is too short

Note: Overall values higher

in merge sort, since baseline

read BW is 6X slower than

baseline write BW

Max achieved at 128-256

(compared to 32-64 in write),

since longer burst needed for read

Peak reached at shorter

ABUF, since larger ABUF

requires more BRAM

CXBAR

ABUF

Long burst length is

excessive since both

reading & writing

On-going Work

• In the process of extending to other benchmarks and making
it user-friendly

• HBM Connect will be released as an automatic HLS C++
component generator based on template functions
– Coming soon in https://github.com/UCLA-VAST/

29
https://image.freepik.com/free-vector/hand-drawn-construction-background_23-2147738793.jpg

Summary

• How to fully exploit FPGA HBM boards with HLS?

– When multiple PEs access multiple HBM PCs?

• HLS Connect

– HLS Virtual Buffer
• Increases AXI burst length while sharing resource among

multiple PCs

– Demux-mux switch
• Increases throughput of 2x2 switching element

– Customized crossbar
• Increases the effective BW lost in built-in crossbar

• Found design points with good BW – resource tradeoff

30

Thank you!
(Please reach me at: ykchoi@cs.ucla.edu)

Supported by:

