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High Bandwidth Memory (HBM) becoming 
increasingly popular in FPGA boards:
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• Stratix 10 MX / Alveo U280 HBM boards provides 32 
pseudo channels (PCs), each with ~13GB/s BW
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+ Reconfigurability and energy-efficiency of FPGAs 

+ Programming support from high-level synthesis (HLS) tools

https://the-stuingtion-and-hiatt-grey-cinematic-universe.fandom.com/wiki/Luke_Skywalker

Now I am the master
of memory-bound 
applications!

<FPGA + HBM + HLS>

…Really?



• Implementation result of memory-bound applications 
on Alveo U280
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PEs compute data in each 

PC independently

-> High eff BW

?

PEs need to read/write 

from multiple PCs

-> Low eff BW

More evaluation result in Y. Choi, et al., "When HLS Meets FPGA HBM: Benchmarking and Bandwidth Optimization." arXiv preprint arXiv:2010.06075 (2020).



• Reason for the low effective BW:

– 1. Shared links among the built-in switches become a 
bottleneck
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<Alveo U280 

Architecture>

Lateral 

connectionsFull crossbar

-> Become 

bottleneck



• Reason for low effective BW:

– 2. Difficult to infer burst access to multiple PCs in 
current HLS programming environment

11 void key_write( hls::stream< ... > & in_fifo,
12             ap_uint<512>* pe0_pc0, pe0_pc1, ... pe0_pc15){
13   while(...){
14 #pragma HLS pipeline II=1
15     {data, bucket_id} = in_fifo.read(); 
16     switch( bucket_id ){ 
17       case 0 : pe0_pc0[addr0++] = data; break;
18       case 1 : pe0_pc1[addr1++] = data; break;
19       ...
20       case 15 : pe0_pc15[addr15++] = data; break;
21 } }
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• Data comes in random order

-> Data may be sent to different PC in next iteration

-> AXI burst length of one



• How to solve this problem?

– We propose HBM Connect: a high-performance customized 
interconnect (between PEs and the HBM) for HBM FPGA 
board

• HLS-based optimization techniques to increase the throughput of AXI 
bus masters and switching elements

• High-performance customized crossbar

• Finds the design point with best BW-resource tradeoff
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?
HBM 

Connect
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• Introduction

• Case Studies

• Design Space and Problem Formulation

• Built-in Crossbar and Custom Crossbar

• AXI Burst Buffer

• Experimental Result



Case Studies
• Case 1: Bucket sort
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Assumes PC-independent 

sorting in the next stage



• Case 2: Merge sort
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Assumes PC-independent 

sorting in the previous stage

(hybrid of bucketing 

+ merge sort)
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Design Space of HBM Connect
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Problem Formulation

• Assumptions
– Memory-bound application

– HLS kernel in dataflow style (with streaming FIFOs)

– Data is read/written in sequential address to HBM

• Problem : 
– Given the data size between all PEs and PCs, find a design space 

(CXBAR, ABUF) that maximizes BW2/LUT

• AT2

• Maximize effective bandwidth while using small resource as possible

• BW term is more important than resource term (memory bound 
application)

• Metric BW2/LUT may be replaced with BW2/FF or BW2/BRAM
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Built-in crossbar and HBM

• Single PC benchmarking result
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Latency:Maximum BW:

* Our HLS HBM benchmarking work is open-sourced at https://github.com/UCLA-VAST/hbmbench



Limitation of Built-in Crossbar

• Many-to-many unicasting BW

– Test configuration: 2x2~16x16 AXI masters x PCs RD/WR 

– Test result:

• Severe effective BW reduction in 16x16
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Customized crossbar

• Topology of crossbar

– Difficult to route fully-connected crossbar

– Decided to use multistage crossbar composed of  2x2 switches
• Several topologies exist – Omega, Clos, Benes, butterfly, etc

– Chose butterfly network
• Reason: Sends data across many hops of AXI masters in its early stage   

-> good LUT-BW tradeoff with just few custom xbar stages
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• 2x2 switch in HLS

– Problem with typical 2x2 switch
• Can send both input data to output if the data's output ports are 

different

• Average throughput for random input : 1.5 elements per cycle

– Proposed solution: mux-demux switch
• Idea: Decompose a 2x2 switch into simple operations to be 

performed in parallel

• Can produce 2 outputs per cycle, 

if consecutive length of data for output < buffer size
18

Note:

• Buffer implemented as FIFO



• Mux-demux switch (…continued)

– Resource (post PnR) & throughput comparison
• Tested with random input in a standalone Vivado HLS test 

• Comparable resource between typical SW vs mux-demux SW

– Complex control in Typ SW 

• Better throughput than Typ SW
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HBM Connect default 
configuration
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• Conventional HLS coding style: Direct access from 
PE to AXI master

– Problem: In bucket sort, two consecutive keys may have 
different destination PCs (random order)

• Existing HLS tools do NOT automatically infer burst access to 
different PCs

• AXI burst length of one 21

PE0 unit
switch

AXI M0 PC0
PC1
PC2
PC3......

......

time

Dest PC (bucket): 3 2 15 14 11 1 1 7 9 10



• Intuitive solution:

– FIFO-based burst buffer**
• Instantiate burst buffer for each destination PC

• Problem 1: Underutilized BRAM 

– Only requires ~32 length burst ↔ BRAM min depth is 512

• Problem 2: Complex routing

– Scatters data to multiple FIFOs and again gathers data to a single 
AXI master

• Result: PnR failed
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** Called “BICA” in Y. Choi, et al., "When HLS Meets FPGA HBM: Benchmarking and Bandwidth Optimization." arXiv preprint arXiv:2010.06075 (2020).



• 3 problems at hand:

– AXI burst access problem 

– BRAM under-utilization problem

– FIFO scatter/gather problem

• Proposed solution: HLS Virtual Buffer (HVB)

– Idea: Share the BRAM as a burst buffer for many 
different destination PCs

• Single physical FIFO is shared among multiple virtual channels

– Architecture:
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(passes burst length & 

destination PC info)

(burst write data)

(data with random 
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<HLS code>

<Architecture>

• HLS Virtual Buffer (….continued)

Reads input data (random PC),

write to physical buffer

Read data from buffer, 

burst write to each PC

Burst length & 

destination PC info



• HLS Virtual Buffer (….continued)

– Comparison

– HVB Abstraction (S2S transformation)
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vir_ch0 = 0;
for(i=0; i<BURST_LEN; i++){
#pragma HLS pipeline II=1

data = pfifo.vfifo_read(vir_ch0);
pe0_pc0[i] = data;

}

Virtual buffer tag

Eff BW higher than 

direct access with AXI 

burst access

Smaller BRAM usage than FIFO burst 

buffer with sharing buffer space

Smaller LUT/FF usage by 

sharing physical FIFO
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Experimental Result

• Case study 1: Bucket sort

– Varying number of custom crossbar stages
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More custom crossbar stages

-> less contention on lateral connections

-> higher effective BW

CXBAR=4

-> 1-1 connection between AXI 

master and PC

-> Approaches the maximum BW 

achievable (206GB/s = 16PCs * 

12.9 GB/s)

(baseline)

-> more LUT/FF usage (but less than BW 

improvement)

Best

Best

-> fewer output PCs per AXI master -> less 

BRAM usage



– BW2/resource metrics

• Case study 2: Merge sort
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Adding few stages adds only few LUTs 

while greatly improving BW
AXI master only communicates with 1 PC

-> Low BRAM usage

Low effective BW when 

burst length is too short

Note:  Overall values higher 

in merge sort, since baseline 

read BW is 6X slower than 

baseline write BW

Max achieved at 128-256 

(compared to 32-64 in write), 

since longer burst needed for read

Peak reached at shorter 

ABUF, since larger ABUF 

requires more BRAM

CXBAR

ABUF

Long burst length is 

excessive since both 

reading & writing



On-going Work

• In the process of extending to other benchmarks and making 
it user-friendly

• HBM Connect will be released as an automatic HLS C++ 
component generator based on template functions
– Coming soon in https://github.com/UCLA-VAST/
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https://image.freepik.com/free-vector/hand-drawn-construction-background_23-2147738793.jpg



Summary

• How to fully exploit FPGA HBM boards with HLS?

– When multiple PEs access multiple HBM PCs?

• HLS Connect

– HLS Virtual Buffer
• Increases AXI burst length while sharing resource among 

multiple PCs

– Demux-mux switch
• Increases throughput of 2x2 switching element

– Customized crossbar
• Increases the effective BW lost in built-in crossbar

• Found design points with good BW – resource tradeoff
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Thank you!
(Please reach me at: ykchoi@cs.ucla.edu)

Supported by:


