
HBM Connect: High-Performance HLS Interconnect
for FPGA HBM

Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason Cong
Computer Science Department, University of California, Los Angeles

{ykchoi,chiyuze}@cs.ucla.edu,{wkqiao2015,nikola.s}@ucla.edu,cong@cs.ucla.edu

ABSTRACT
With the recent release of High Bandwidth Memory (HBM) based
FPGA boards, developers can now exploit unprecedented external
memory bandwidth. This allows more memory-bounded applica-
tions to benefit from FPGA acceleration. However, fully utilizing
the available bandwidth may not be an easy task. If an application
requires multiple processing elements to access multiple HBM chan-
nels, we observed a significant drop in the effective bandwidth. The
existing high-level synthesis (HLS) programming environment had
limitation in producing an efficient communication architecture.
In order to solve this problem, we propose HBM Connect, a high-
performance customized interconnect for FPGA HBM board. Novel
HLS-based optimization techniques are introduced to increase the
throughput of AXI bus masters and switching elements. We also
present a high-performance customized crossbar that may replace
the built-in crossbar. The effectiveness of HBM Connect is demon-
strated using Xilinx’s Alveo U280 HBM board. Based on bucket
sort and merge sort case studies, we explore several design spaces
and find the design point with the best resource-performance trade-
off. The result shows that HBM Connect improves the resource-
performance metrics by 6.5X–211X.

KEYWORDS
High Bandwidth Memory, high-level synthesis, field-programmable
gate array, on-chip network, performance optimization

ACM Reference Format:
Young-kyu Choi, Yuze Chi, Weikang Qiao, Nikola Samardzic, and Jason
Cong. 2021. HBM Connect: High-Performance HLS Interconnect for FPGA
HBM. In Proceedings of the 2021 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA ’21), February 28-March 2, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3431920.3439301

1 INTRODUCTION
Although field-programmable gate array (FPGA) is known to pro-
vide a high-performance and energy-efficient solution for many
applications, there is one class of applications where FPGA is gen-
erally known to be less competitive: memory-bound applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’21, February 28-March 2, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8218-2/21/02. . . $15.00
https://doi.org/10.1145/3431920.3439301

In a recent study [8], the authors report that GPUs typically out-
perform FPGAs in applications that require high external memory
bandwidth. The Virtex-7 690T FPGA board used for the experiment
reportedly has only 13 GB/s peak DRAM bandwidth, which is much
smaller than the 290 GB/s bandwidth of the Tesla K40 GPU board
used in the study (even though the two boards are based on the
same 28 nm technology). This result is consistent with comparative
studies for earlier generations of FPGAs and GPUs [9, 10]—FPGAs
traditionally were at a disadvantage compared to GPUs for ap-
plications with low reuse rate. The FPGA DRAM bandwidth was
also lower than the CPUs—Sandy Bridge E5-2670 (32 nm, similar
generation as Virtex-7 in [8]) has a peak bandwidth of 42 GB/s [21].

But with the recent emergence of the High Bandwidth Memory 2
(HBM2) [15] FPGA boards, there is a good chance that future FPGAs
can compete with GPUs to achieve higher performance in memory-
bound applications. HBM benchmarking works [19, 27] report that
Xilinx’s Alveo U280 [28] (two HBM2) provides HBM bandwidth of
422–425 GB/s, which approaches that of Nvidia’s Titan V GPU [23]
(650 GB/s, three HBM2). Similar numbers are reported for Intel’s
Stratix 10 MX [13] as well. Since FPGAs already have advantage
over GPUs in terms of its custom datapath and the custom data
types [10, 22], enhancing external memory bandwidth with HBM
could allow FPGAs to accelerate a wider range of applications.

The large external memory bandwidth of HBM originates from
multiple independent HBM channels (e.g., Fig. 1). To take full ad-
vantage of this architecture, we need to determine the most efficient
way to transfer data from multiple HBM channels to multiple PEs.
It is worth noting that the Convey HC-1ex platform [2] also has
multiple (64) DRAM channels like the FPGA HBM boards. But
unlike Convey HC-1ex PEs that issue individual FIFO requests of
64b data, HBM PEs are connected to 512b AXI bus interface. Thus,
utilizing the bus burst access feature has a large impact on the
performance of FPGA HBM boards. Also, the Convey HC-1ex has
a pre-synthesized full crossbar between PEs and DRAM, but FPGA
HBM boards require programmers to customize the interconnect.

Table 1: Effective bandwidth ofmemory-bound applications
on Alveo U280 using Vivado HLS and Vitis tools

Appli- PC KClk EffBW EffBW/PC
cation # (MHz) (GB/s) (GB/s)

MV Mult 16 300 211 13.2
Stencil 16 293 206 12.9

Bucket sort 16 277 65 4.1
Merge sort 16 196 9.4 0.59

In order to verify that we can achieve high performance on an
FPGA HBM board, we have implemented several memory-bound

https://doi.org/10.1145/3431920.3439301
https://doi.org/10.1145/3431920.3439301
https://doi.org/10.1145/3431920.3439301

Figure 1: Alveo U280 Architecture

applications on Alveo U280 (Table 1). We were not able to complete
the routing for all 32 channels, so we used the next largest power-
of-2 HBM pseudo channel (PC) of 16. The kernels are written in
C (Xilinx Vivado HLS [31]) for ease of programming and a faster
development cycle [17]. For dense matrix-vector (MV) multiplica-
tion and stencil, the effective bandwidth per PC is similar to the
board’s sequential access bandwidth (Section 4.1.1). Both applica-
tions can evenly distribute the workload among the available HBM
PCs, and their long sequential memory access pattern allows a sin-
gle processing element (PE) to fully saturate an HBM PC’s available
bandwidth.

However, the effective bandwidth is far lower for bucket and
merge sort. In bucket sort, a PE distributes keys to multiple HBM
PCs (one HBM PC corresponds to one bucket). In merge sort, a
PE collects sorted keys from multiple HBM PCs. Such an oper-
ation is conducted in all PEs—thus, we need to perform all PEs
to all PCs communication. Alveo U280 provides an area-efficient
built-in crossbar to facilitate this communication pattern. But, as
will be explained in Section 6.1, enabling external memory burst
access to multiple PCs in the current high-level synthesis (HLS)
programming environment is difficult. Instantiating a burst buffer
is a possible option, but we will show this leads to high routing
complexity and large BRAM consumption (details to be presented in
Section 6.2). Also, shared links among the built-in switches (called
lateral connections) become a bottleneck that limits the effective
bandwidth (details to be presented in Section 4.2).

This paper proposes HBM Connect—a high-performance cus-
tomized interconnect for FPGA HBM board. We first evaluate the
performance of Alveo U280 built-in crossbar and analyzes the cause
of bandwidth degradation when PEs access several PCs. Next, we
propose a novel HLS buffering scheme the increases the effective
bandwidth of the built-in crossbar and consumes fewer BRAMs.
We also present a high-performance custom crossbar architecture

to remove the performance bottleneck from lateral connections. As
will be demonstrated in the experimental section, we found that it is
sometimes more efficient to completely ignore the built-in crossbar
and only utilize our proposed customized crossbar architecture.
The proposed design is fully compatible with Vivado HLS C syntax
and does not require RTL coding.

The contribution of this paper can be summarized as follows:

• A BRAM-efficient HLS buffering scheme that increases the
AXI burst length and the effective bandwidth when PEs
access several PCs.

• An HLS-based solution that increases the throughput of a
2×2 switching element of customized crossbar.

• A design space exploration of customized crossbar and AXI
burst buffer that finds the best area-performance trade-off
in HBM many-to-many unicast environment.

• Evaluation of the built-in crossbar on Alveo U280 and analy-
sis of its performance.

The scope of this paper is currently limited to Xilinx’s Alveo
U280 board, but we plan to extend it to other Xilinx and Intel HBM
boards in the future.

2 BACKGROUND
2.1 High Bandwidth Memory 2
High Bandwidth Memory [15] is a 3D-stacked DRAM designed to
provide a high memory bandwidth. There are 2~8 HBM dies and
1024 data I/Os in each stack. The HBM dies are connected to a base
logic die using Through Silicon Via (TSV) technology. The base
logic die connects to FPGA/GPU/CPU dies through an interposer.
The maximum I/O data rate is improved from 1 Gbps in HBM1 to
2 Gbps in HBM2. This is partially enabled by the use of two pseudo
channels (PCs) per physical channel to hide the latency [13, 16].
Sixteen PCs exist per stack, and we can access PCs independently.

2.2 HBM2 FPGA Platforms and Built-In
Crossbar

Intel and Xilinx have recently released HBM2 FPGA boards: Xilinx’s
Alveo U50 [29], U280 [28], and Intel’s Stratix 10 MX [13]. These
boards consist of an FPGA and twoHBM2 stacks (8 HBM2 dies). The
FPGA and the HBM2 dies are connected through 32 independent
PCs. Each PC has 256MB of capacity (8 GB in total).

In Stratix 10 MX (early-silicon version), each PC is connected to
the FPGA PHY layer through 64 data I/Os that operates at 800MHz
(double data rate). The data communication between the kernels
(user logic) and the HBM2 memory is managed by the HBM con-
troller (400MHz). AXI4 [1] and Avalon [14] interfaces (both with
256 data bitwidth) are used to communicate with the kernel side.
The clock frequency of kernels may vary (capped at 450MHz) de-
pending on its complexity. Since the frequency of HBMCs is fixed
to 400MHz, rate matching (RM) FIFOs are inserted between the
kernels and the memory controllers.

In Xilinx Alveo U280, the FPGA is composed of three super logic
regions (SLRs). The overall architecture of U280 is shown in Fig. 1
The FPGA connects to the HBM2 stacks on the bottom SLR (SLR0).
The 64b data I/Os to the HBM operate at the frequency of 900 MHz
(double data rate). The data transaction is managed by the HBM

Figure 2: Bucket sort application

memory controllers (MCs). A MC communicates with the user logic
(kernel) via a 256b AXI3 slave interface running at 450 MHz [30].
The user logic has a 512b AXI3 master interface, and the clock
frequency of the user logic is capped at 300 MHz. The ideal memory
bandwidth is 460 GB/s (= 256b * 32PCs * 450MHz = 64b * 32PCs * 2
* 900MHz).

Four user logic AXI masters can directly communicate with any
of the four adjacent PC AXI slaves through a fully-connected unit
switch. For example, the first AXI master (M0) has direct connec-
tions to PCs 0–4 (Fig. 1). If an AXI master needs to access non-
adjacent PCs, it can use the lateral connections among the unit
switches—but the network contention may limit the effective band-
width [30]. For example in Fig. 1, M16 and M17 AXI masters and
the lower lateral AXI master may compete with each other to use
the upper lateral AXI slave for communication with PC 0–15. Note
that each AXI master has a connection to four PC AXI slaves and
two lateral connections (see M5 in Fig. 1).

The thermal design power (TDP) of Alveo U280 is 200W. Note
that Alveo U280 also has traditional DDR DRAM—but we decided
not to utilize the traditional DRAM because the purpose of this
paper is to evaluate the HBM memory. We refer readers to the
work in [19, 27] for comparison of HBM and DDR memory and also
the work in [20] for optimization case studies on heterogeneous
external memory architectures.

2.3 Case Studies
In order to quantify the resource consumption and the performance
of HBM interconnect when PEs access multiple PCs, we select two
applications for case studies: bucket sort and merge sort. A bucket
sort PE writes to multiple PCs, and a merge sort PE reads from
multiple PCs. These applications also have an ideal characteristic of
accessing each PC in a sequential fashion—allowing us to analyze
the resource-performance trade-off more clearly.

2.3.1 Bucket Sort. Arrays of unsorted keys are stored in input
PCs. A bucket PE sequentially reads the unsorted keys from each
input PC and classify them into different output buckets based on
the value of the keys. Each bucket is stored in a single HBM PC,
and this allows a second stage of sorting (e.g., with merge sort) to
work independently on each bucket. Several bucket PEs may send

Figure 3: Merge sort application

their keys to the same PC—thus, all-to-all unicast communication
architecture is needed for write as shown in Fig. 2. Since the keys
within a bucket does not need to be in a specific order, we combine
all the buckets in the same PC and write the keys to the same output
memory space.

Since our primary goal is to analyze and explore the HBM PE-PC
interconnect architecture, we make several simplifications on the
sorter itself. We assume a key is 512b long. We also assume that the
distribution of keys is already known, and thus we preset a splitter
value that divides the keys into equal-sized buckets. Also, we do not
implement the second-stage intra-bucket sorter—the reader may
refer to [3, 12, 25, 26] for high-performance sorters that utilize the
external memory.

We limit the number of used PCs to 16 for two reasons. First,
we were not able to utilize all 32 PCs due to routing congestion
(more details in Section 4.1.1). Second, we wanted to simplify the
architecture by keeping the number of used PCs to the power of
two.

2.3.2 Merge Sort. In contrast to the bucket sort application which
sends the data to a PC bucket before sorting within a PC bucket, we
can also sort the data within a PC first and then collect and merge
the data among different PCs. Fig. 3 demonstrates this process. The
intra-PC sorted data is sent to one of the PEs depending on the
range of its value, and each PE performsmerge sort on the incoming
data. Each PE reads from 16 input PCs and writes to one PC. This
sorting process is a hybrid of bucketing and merge sort—but for
convenience, we will simply refer to this application as merge sort
in the rest of this paper.

This application requires a many-to-many unicast architecture
between PCs and PEs for data read, and a one-to-one connection
is needed for data write. It performs both reading and writing in a
sequential address. We make a similar simplification as we did for
the bucket sort—we assume 512b key and equal key distribution,
and we omit the first-stage intra-PC sorter.

Figure 4: Conventional HLS coding style to send keys tomul-
tiple output PCs (buckets) using the built-in crossbar

2.4 Conventional HLS Programming for
Bucket Sort

We program the kernel and host in C using Xilinx’s Vitis [33] and
Vivado HLS [31] tools. We employ dataflow programming style
(C functions executing in parallel and communicating through
streaming FIFOs) for kernels to achieve high throughput with small
BRAM consumption [31].

Alveo U280 and Vivado HLS offer a particular coding style to
access multiple PCs. An example HLS code for bucket sort is shown
in Fig. 4. The output write function key_write reads an input data
and data’s bucket ID (line 15), and it writes the data to the function
argument that corresponds to the bucket ID (lines 17 to 20). We
can specify the output PC (bucket ID) of the function arguments
in Makefile (lines 22 to 25). Notice that a common bundle (M0) was
assigned to all function arguments (lines 2 to 5). A bundle is a
Vivado HLS concept that corresponds to an AXI master. That is,
key_write uses a single AXI master M0 and the built-in crossbar
to distribute the keys to all PCs.

Although easy-to-code and area-efficient, this conventional HLS
coding style has two problems. First, while accessing multiple PCs
from a single AXI master, data from different AXI masters will
frequently share the lateral connections and reduce the effective
bandwidth (more details in Section 4.2). Second, the bucket ID of a
key read in line 15 may differ in the next iteration of the while loop.
Thus, Vivado HLS will only use an AXI burst length of one for each
key write. This also degrades the HBM effective bandwidth (more
details in Section 6.1). In the following sections, we will examine
solutions to these problems.

Figure 5: Overall architecture of HBM Connect and the ex-
plored design space

3 DESIGN SPACE AND PROBLEM
FORMULATION

Let us denote a PE that performs computation as 𝑃𝐸𝑖 (0 <= 𝑖 <

𝐼) and an HBM PC as 𝑃𝐶 𝑗 (0 <= 𝑗 < 𝐽). PE is a coarse-grain
computational unit composed of a single function and may contain
multiple fine-grain computational units inside its function. 𝑃𝐸𝑖
transfers 𝑑𝑎𝑡𝑎𝑖 𝑗 to 𝑃𝐶 𝑗 . If 𝑃𝐸𝑖 makes no communication with 𝑃𝐶 𝑗 ,
𝑑𝑎𝑡𝑎𝑖 𝑗 equals 0. We denote the averaged effective bandwidth of
transferring 𝑑𝑎𝑡𝑎𝑖 𝑗 as 𝐵𝑊𝑖 𝑗 . The total effective bandwidth of the
system 𝐵𝑊 is equal to the summation of 𝐵𝑊𝑖 𝑗 for all (𝑖 , 𝑗).

We make the following assumptions. First, the kernel is written
in a dataflow style, where functions execute in parallel and commu-
nicate through streaming FIFOs. Second, we read or write 𝑑𝑎𝑡𝑎𝑖 𝑗
from/to 𝑃𝐶 𝑗 in a sequential address (see Section 2.3 for examples).
Third, PEs reads and writes data every cycle (II=1) if its input/output
FIFOs are not empty or full. Fourth, the pipeline depth of PEs is
negligible compared to the total execution time 𝑡𝑇𝑂𝑇 .

In Fig. 5, we show the design space of the HBM Connect. It
consists of a custom crossbar, an AXI burst buffer, and a built-in
AXI crossbar.

The purpose of the custom crossbar is to partly replace the func-
tionality of the built-in AXI crossbar and increase the effective
bandwidth. We employ a multi-stage butterfly network for a rea-
son we will explain in Section 5.1. As a design space, we may use
𝐶𝑋𝐵𝐴𝑅 = 0, 1, 2, ..., log(16) stages of custom crossbar.

An AXI burst buffer is needed to enable burst access in the built-
in crossbar (more details in Section 6.1). The design space of the
AXI buffer size is 𝐴𝐵𝑈𝐹 = 0, 1, 2, 4, ... 128, 256.

The aim of this work is to find a 𝑃𝐸𝑖 -𝑃𝐶 𝑗 interconnect architec-
ture (among all 𝑖’s and 𝑗 ’s) that has a good trade-off between the data
transmission time and the interconnect resource usage. For quanti-
tative evaluation, we use metrics that are similar to the inverse of
the classic area-delay-square product (𝐴𝑇 2) metric. Specifically, we
divide the squared value of the effective HBM bandwidth by LUT
(𝐵𝑊 2/𝐿𝑈𝑇), FF (𝐵𝑊 2/𝐹𝐹), or BRAM (𝐵𝑊 2/𝐵𝑅𝐴𝑀). These metrics
intuitively match a typical optimization goal of maximizing the
effective bandwidth while using as small resource as possible. The
effective bandwidth term is squared with an assumption that the

HBM boards will be more popular for memory-bound applications—
that is, the bandwidth is a more important criteria than the resource
consumption in the HBM boards.

The problem we solve in this paper is formulated as:
Given 𝑑𝑎𝑡𝑎𝑖 𝑗 , find a design space (𝐶𝑋𝐵𝐴𝑅, 𝐴𝐵𝑈𝐹) that minimizes
𝐵𝑊 2/𝐿𝑈𝑇 .

Metric 𝐵𝑊 2/𝐿𝑈𝑇 in the formulation may be replaced with met-
rics 𝐵𝑊 2/𝐹𝐹 or 𝐵𝑊 2/𝐵𝑅𝐴𝑀 . The choice among the three metrics
will depend upon the bottleneck resource of the PEs.

We will explain the details of the HBM Connect major compo-
nents in the following sections. Section 4 provides an analysis of the
built-in crossbar. The architecture and optimization of the custom
crossbar is presented in Section 5. The HLS-based optimization of
the AXI burst buffer will be described in Section 6.

4 BUILT-IN CROSSBAR AND HBM
This section provides an analysis of the built-in AXI crossbar and
HBM. The analysis is used to estimate the effective bandwidth
of the built-in interconnect system and guide the design space
exploration. See [4] for more details on our memory access analysis.
We also refer readers to the related HBM benchmarking studies in
[18, 19, 27].

4.1 Single PC Characteristics
We measure the effective bandwidth when a PE uses a single AXI
master to connect to a single HBM PC. We assume that the PE is
designed with Vivado HLS.

4.1.1 Maximum Bandwidth. The maximum memory bandwidth of
the HBM boards is measured with a long (64MB) sequential access
pattern. The experiment performs a simple data copy with read
& write, read only, and write only operations. We use the Alveo’s
default user logic data bitwidth of 512b.

A related RTL-based HBM benchmarking tool named Shuhai
[27] assumes that the total effective bandwidth can be estimated by
multiplying the bandwidth of a single PC by the total number of
PCs. In practice, however, we found that it is difficult to utilize all
PCs. PC 30 and 31 partially overlap with the PCIE static region, and
Vitis was not able to complete the routing even for a simple traffic
generator for PC 30 and 31. The routing is further complicated
by the location of HBM MCs—they are placed on the bottom SLR
(SLR0) and user logic of memory-bound applications tends to get
placed near the bottom. For this reason, we used 16 PCs (nearest
power-of-two usable PCs) for evaluation throughout this paper.

Table 2: Maximum effective per-PC memory bandwidth
with sequential access pattern on Alveo U280 (GB/s)

Read & Write Read only Write only Ideal
12.9 13.0 13.1 14.4

Table 2 shows the measurement result. The effective bandwidth
per PC is similar to 13.3 GB/s measured in RTL-based Shuhai [27].
The result demonstrates that we can obtain about 90% of the ideal
bandwidth. The bandwidth can be saturated with read-only or
write-only access.

(a) (b)

Figure 6: Effective memory bandwidth per PC (a single AXI
master accesses a single PC) with varying sequential data
access size (a) Read BW (b) Write BW

4.1.2 Short Sequential Access Bandwidth. In most practical applica-
tions, it is unlikely that we can fetch such a long (64MB) sequential
data. The bucket PE, for example, needs to write to multiple PCs,
and there is a constraint on the size of write buffer for each PC (more
details in Section 6). Thus, each write must be limited in length. A
similar constraint exists on the merge sort PE’s read length.

HLS applications require several cycles of delay when making
an external memory access. We measure the memory latency 𝐿𝐴𝑇
using the method described in [5, 6] (Table 3).

Table 3: Read/write memory latency

Read lat Write lat
Total 289 ns 151 ns

Let us divide 𝑑𝑎𝑡𝑎𝑖 𝑗 into 𝐶𝑁𝑈𝑀𝑖 𝑗 number of data chunks sized
𝐵𝐿𝐸𝑁𝑖 𝑗 :

𝑑𝑎𝑡𝑎𝑖 𝑗 = 𝐶𝑁𝑈𝑀𝑖 𝑗 ∗ 𝐵𝐿𝐸𝑁𝑖 𝑗 (1)
The time 𝑡𝐵𝐿𝐸𝑁𝑖 𝑗

taken to complete one burst transaction of length
𝐵𝐿𝐸𝑁𝑖 𝑗 to HBM PC can be modeled as [7, 24]:

𝑡𝐵𝐿𝐸𝑁𝑖 𝑗
= 𝐵𝐿𝐸𝑁𝑖 𝑗/𝐵𝑊𝑚𝑎𝑥 + 𝐿𝐴𝑇 (2)

where 𝐵𝑊𝑚𝑎𝑥 is the maximum effective bandwidth (Table 2) of one
PC, and 𝐿𝐴𝑇 is the memory latency (Table 3).

Then the effective bandwidth when a single AXI master accesses
a PC is:

𝐵𝑊𝑖 𝑗 = 𝐵𝐿𝐸𝑁𝑖 𝑗/𝑡𝐵𝐿𝐸𝑁𝑖 𝑗
(3)

Fig. 6 shows the comparison between the estimated effective
bandwidth and the measured effective bandwidth after varying the
length (𝐵𝐿𝐸𝑁𝑖 𝑗) of sequential data access on a single PC. Note that
the trend of the effective bandwidth in this figure resembles that of
other non-HBM, DRAM-based FPGA platforms [5, 6].

4.2 Many-to-Many Unicast Characteristics
In this section, we consider the case when multiple AXI masters
access multiple PCs in round-robin. Since each AXI master access
only one PC at a time, we will refer to this access pattern as many-
to-many unicast. We vary the number of PCs accessed by AXI
masters. For example, in the many-to-many write unicast test with
(AXI masters × PCs) = (2×2) configuration, AXI master M0 writes to
PC0/PC1, M1 writes to PC0/PC1, M2 writes to PC2/PC3, M3 writes
to PC2/PC3, and so on. AXI masters access different PCs in round

(a) (b)

Figure 7: Many-to-many unicast effective memory band-
width among 2~16 PCs (a) Read BW (b) Write BW

(a) (b)

Figure 8: Maximum bandwidth (𝐵𝑊𝑚𝑎𝑥) for many-to-many
unicast on Alveo U280 (GB/s) (a) Read BW (b) Write BW

robin. Another example of this would be the many-to-many read
unicast test with (AXI masters × PCs) = (4×4) configuration. All
M0, M1, M2, and M3 masters read from PC0, PC1, PC2, and PC3
in round robin. The AXI masters are not synchronized, and it is
possible that some masters will idle waiting for other masters to
finish their transaction.

Fig. 7 shows the effective bandwidth after varying the burst
length and the number of PCs accessed by AXI masters. The write
bandwidth (Fig. 7(b)) is generally higher than the read bandwidth
(Fig. 7(a)) for the same burst length because the write memory
latency is smaller than the read memory latency (Table 3). Shorter
memory latency decreases the time needed per transaction (Eq. 2).

For 16×16 unicast, which is the configuration used in bucket
sort and merge sort, the lateral connections become the bottleneck.
For example, M0 needs to cross three lateral connections of unit
switches to reach PC12–PC15. Multiple crossings severly reduces
the overall effective bandwidth.

Fig. 8 summarizes the maximum bandwidth observed in Fig. 7.
The reduction in the maximum bandwidth becomes more severe as
more AXI masters contend with each other to access the same PC.

We can predict the effective bandwidth of many-to-many unicast
by replacing the 𝐵𝑊𝑚𝑎𝑥 in Eq. 2 with the maximum many-to-many
unicast bandwidth in Fig. 8. The maximum many-to-many unicast
bandwidth can be reasonably well estimated (𝑅2=0.95 ~ 0.96) by
fitting the experimentally obtained values with a second-order
polynomial. The fitting result is shown in Fig. 8.

5 CUSTOM CROSSBAR
5.1 Network Topology
As demonstrated in Section 4.2, it is not possible to reach the maxi-
mum bandwidth when an AXI master tries to access multiple PCs.
To reduce the contention, we add a custom crossbar.

Figure 9: The butterfly custom crossbar architecture (when
𝐶𝑋𝐵𝐴𝑅=4)

We found that Vitis was unable to finish routing when we tried
to make a fully connected crossbar. Thus, we decided to employ a
multi-stage network. To further simplify the routing process, we
compose the network with 2×2 switching elements.

There are several multi-stage network topologies. Examples in-
clude Omega, Clos, Benes, and butterfly networks. Among them, we
chose the butterfly network shown in Fig. 9. We chose this topology
because the butterfly network allows sending data across many
hops of AXI masters with just a few stages. For example, let us
assume we deploy only the first stage of butterfly network shown
in Fig. 9. Data sent from PE0 to PC8–PC15 can avoid going through
two or three lateral connections with just a single switch SW1_0.
The same benefit applies to the data sent from PE8 to PC0–PC7.
We can achieve a good trade-off between the LUT consumption
and the effective bandwidth due to this characteristics. The but-
terfly network reduces its hop distance at the later stages of the
custom crossbar. Note that the performance and the resource usage
is similar to that of Omega networks if all four stages are used.

Adding more custom stages will reduce the amount of traffic
crossing the lateral connection at the cost of more LUT/FF usage. If
we implement two stages of butterfly as in Fig. 5, each AXI master
has to cross a single lateral connection. If we construct all four
stages as in Fig. 9, the AXI master in the built-in crossbar only
accesses a single PC.

5.2 Mux-Demux Switch
A 2×2 switching element in a multistage network reads two input
data and writes to output ports based on the destination PC. A
typical 2×2 switch can send both input data to output if the data’s
output ports are different. If they are the same, one of them has to
stall until the next cycle. Assuming the 2×2 switch has an initiation
interval (II) of 1 and the output port of the input data is random,
the averaged number of output data per cycle is 1.5.

We propose anHLS-based switch architecture namedmux-demux
switch to increase the throughput. A mux-demux switch decom-
poses a 2×2 switch into simple operations to be performed in paral-
lel. Next, we insert buffers between the basic operators so that there
is a higher chance that some data will exist to be demuxed/muxed.
We implement buffers as FIFOs for simpler coding style.

Figure 10: Architecture of mux-demux switch

Fig. 10 shows the architecture of mux-demux switch. After read-
ing data in input0 and input1, the two demux modules indepen-
dently classify the data based on the destination PC. Then instead
of directly comparing the input data of the two demux modules,
we store them in separate buffers. In parallel, the two mux modules
each read data from two buffers in round-robin and send the data
to their output ports.

As long as the consecutive length of data intended for a particular
output port is less than the buffer size, this switch can almost
produce two output elements per cycle. In essence, this architecture
trades-off buffer with performance.

We estimate the performance of mux-demux switch with a
Markov chain model (MCM), where the number of remaining buffer
corresponds to a single MCM state. The transition probability be-
tween MCM states is modeled from the observation that the demux
module will send data to one of the buffers with 50% probability
every cycle for random input (thus reducing buffer space by one)
and that the mux module will read from each buffer every two cy-
cles in round-robin (thus increasing buffer space by one). The mux
module does not produce an output if the buffer is in an “empty”
MCM state. The MCM estimated throughput with various buffer
sizes is provided in the last row of Table 4.

Table 4: Resource consumption (post-PnR) and throughput
(experimental and estimated) comparison of typical 2×2
switch and the proposed 2×2 mux-demux switch in a stand-
alone Vivado HLS test

Typ SW Mux-Demux SW
Buffer size - 4 8 16

LUT 3184 3732 3738 3748
FF 4135 2118 2124 2130

Thr (Exp.) 1.49 1.74 1.86 1.93
Thr (Est.) 1.5 1.74 1.88 1.94

We measure the resource consumption and averaged throughput
after generating random input in a stand-alone Vivado HLS test.
We compare the result with a typical 2×2 HLS switch that produces
two output data only when its two input data’s destination port is
different. One might expect that a mux-demux switch would con-
sume much more resource than a typical switch because it requires
4 additional buffers (implemented as FIFOs). But the result (Table 4)
indicates that the post-PnR resource consumption is similar. This is

due to the complex typical switch control circuit which compares
two inputs for destination port conflict on every cycle (II=1). A
mux-demux switch, on the other hand, decomposes this compar-
ison into 4 simpler operations. Thus, the resource consumption
is still comparable. In terms of throughput, a mux-demux switch
clearly outperforms a typical switch.

We fix the buffer size of the mux-demux switch to 16 in HBM
Connect, because it gives the best throughput-resource trade-off.
Table 4 confirms that the experimental throughput well matches
the throughput estimated by the MCM.

6 AXI BURST BUFFER
6.1 Direct Access from PE to AXI Master
In bucket sort, PEs distribute the keys to output PCs based on its
value (each PC corresponds to a bucket). Since each AXI master
can send data to any PC using the built-in crossbar (Sections 2.2),
we first make a one-to-one connection between a bucket PE and an
AXI master. Then we utilize the built-in AXI crossbar to perform
the key distribution. We use the coding style in lines 17 to 20 of
Fig. 4 to directly access different PCs.

With this direct access coding style, however, we were only
able to achieve 59 GB/s among 16 PCs (with two stages of custom
crossbar). We obtain such a low effective bandwidth because there
is no guarantee that two consecutive keys from input PC will be
sent to the same bucket (output PC). Existing HLS tools do not
automatically hold the data in buffer for burst AXI access to each
HBM PC. Thus, the AXI burst access is set to one. Non-burst access
to HBM PC severely degrades the effective bandwidth (Fig. 6 and
Fig. 7). A similar problem occurs when making a direct access for
read many-to-many unicast in the merge sort.

6.2 FIFO-Based Burst Buffer
An intuitive solution to this problem is to utilize a FIFO-based AXI
burst buffer for each PC [4]. Based on data’s output PC information,
data is sent to a FIFO burst buffer reserved for that PC. Since all the
data in a particular burst buffer is guaranteed to be sent to a single
HBM PC, the AXI bus can now be accessed in a burst mode. We
may choose to enlarge the burst buffer size to increase the effective
bandwidth.

However, we found that this approach hinders with effective
usage of FPGA on-chip memory resource. It is ideal to use BRAM
as the burst buffer because BRAM is a dedicated memory resource
with higher memory density than LUT (LUTmight be more efficient
as a compute resource). But BRAM has a minimum depth of 512
[32]. As was shown in Fig. 6, we need a burst access of around
32 (2KB) to reach a half of the maximum bandwidth and saturate
the HBM bandwidth with simultaneous memory read and write.
Setting the burst buffer size to 32 will under-utilize the minimum
BRAM depth (512). Table 5 confirms the high resource usage of the
FIFO-based burst buffers.

Another problem is that this architecture scatters data tomultiple
FIFOs and again gathers data to a single AXI master. This further
complicates the PnR process. Due to the high resource usage and
the routing complexity, we were not able to route the designs with
FIFO-based burst buffer (Table 5).

Table 5: Effective bandwidth and FPGA resource consump-
tion of bucket sort with different AXI burst buffer schemes
(𝐶𝑋𝐵𝐴𝑅 = 2)

Buf Bur CX FPGA Resource KClk EffBW
Sch Len bar LUT/FF/DSP/BRAM (MHz) (GB/s)
Direct access 2 126K / 238K / 0 / 248 178 56
FIFO 16 2 195K / 335K / 0 / 728 PnR failed
Burst 32 2 193K / 335K / 0 / 728 PnR failed
Buf 64 2 195K / 335K / 0 / 728 PnR failed
HLS 16 2 134K / 233K / 0 / 368 283 116
Virt 32 2 134K / 233K / 0 / 368 286 185
Buf 64 2 134K / 233K / 0 / 368 300 180

Figure 11: HLS virtual buffer architecture for 8 PCs

Figure 12: HLS code for HLS virtual buffer (for write)

6.3 HLS Virtual Buffer
In this section, we propose an HLS-based solution to solve all of
the aforementioned problems: the burst access problem, the BRAM
under-utilization problem, and the FIFO scatter/gather problem.
The idea is to share the BRAM as a burst buffer for many different

Figure 13: Abstracted HLS virtual buffer syntax (for read)

target PCs. But none of current HLS tools offer such functionality.
Thus, we propose a new HLS-based buffering scheme called HLS
virtual buffer (HVB). HVB allows a single physical FIFO to be shared
among multiple virtual channels [11] in HLS. As a result, we can
have a higher utilization of BRAM depth as the FIFOs for many
different PCs. Another major advantage is that the HVB physically
occupies one buffer space—we can avoid scattering/gathering data
from multiple FIFOs and improve the PnR process.

We present the architecture of HVB in Fig. 11 and its HLS code
in Fig. 12. A physical buffer (pbuf) is partitioned into virtual FIFO
buffers for 8 target PCs. The buffer for each PC has a size of 𝐴𝐵𝑈𝐹 ,
and we implement it as a circular buffer with a write pointer (wptr)
and a read pointer (rptr). At each cycle, the HVB reads a data from
textttin_fifo in a non-blocking fashion (line 24) and writes it to the
target PC’s virtual buffer (line 27). The partition among different
PCs in pbuf is fixed.

Whereas the target PC for input data is random, the output data
is sent in a burst for the same target PC. Before initiating a write
transfer for a new target PC, the HVB passes the target PC and the
number of elements in out_info_fifo (line 20). Then it transmits
the output data in a burst as shown in lines 7 to 14. A separate write
logic (omitted) receives the burst information and relays the data
to an AXI master.

It implements the HVB for read operation (e.g., in merge sort)
in a similar code as in Fig. 12, except that it collects the input
data in a burst from a single source PC and sends output data in a
round-robin fashion among different PCs.

The HVB for read operation (e.g., in merge sort) is implemented
in a similar code as in Fig. 12, except that the input data is collected
in a burst from a single source PC and output data is sent in a
round-robin fashion among different PCs.

Table 5 shows that the overall LUT/FF resource consumption
of HVB is similar to the direct access scheme. The performance
is much better than the direct access scheme because we send
data through the built-in crossbar in a burst. Compared to the
FIFO burst buffer scheme, we reduce the BRAM usage as expected
because HVB better utilizes the BRAM by sharing. Also, the LUT/FF
usage has been reduced because we only use a single physical FIFO.
The routing for HVB is successful because of the small resource
consumption and the low complexity.

We can estimate the performance of HVB by setting 𝐵𝑊𝑚𝑎𝑥 of
Eq. 2 to that of Fig. 8 and 𝐵𝐿𝐸𝑁 to the buffer size of HVB (𝐴𝐵𝑈𝐹).

It is difficult for novice HLS users to incorporate the code in
Fig. 12 into their design. For better abstraction, we propose us-
ing the syntax shown in Fig. 13. A programmer can instantiate
a physical buffer pfifo and use a new virtual buffer read key-
word vfifo_read. The virtual channel can be specified with a tag

Table 6: Effective bandwidth (on-board test), 𝐵𝑊 2/resource metrics, and resource consumption (post-PnR) of bucket sort after
varying the number of crossbar stages

Cus AXI Bur FPGA Resource KClk EffBW 𝐵𝑊 2/Resource Metrics
Xbar Xbar Len LUT/FF/DSP/BRAM (MHz) (GB/s) 𝐵𝑊 2/𝐿𝑈 𝐵𝑊 2/𝐹𝐹 𝐵𝑊 2/𝐵𝑅
0 4 0 102K / 243K / 0 / 248 277 65 1.0 1.0 1.0
0 4 64 122K / 243K / 0 / 480 166 108 2.3 2.7 1.4
1 3 64 121K / 231K / 0 / 368 281 160 5.1 6.4 4.1
2 2 64 134K / 233K / 0 / 368 300 180 5.8 8.0 5.2
3 1 64 155K / 243K / 0 / 368 299 195 5.9 9.0 6.1
4 0 0 189K / 305K / 0 / 248 207 203 5.3 7.8 9.8

vir_ch0. Then an automated tool can be used to perform a code-
to-code transformation from this abstracted code to the detailed
implementation in Fig. 12.

7 DESIGN SPACE EXPLORATION
As explained in Section 3, we explore the design space for 𝐶𝑋𝐵𝐴𝑅
= 0, 1, 2, ...log(16) and𝐴𝐵𝑈𝐹 = 0, 1, 2, 4, ... 128, 256. The throughput
is estimated using the methods described in Sections 4, 5, and 6.
The resource is estimated by first generating few design spaces
and obtaining the unit resource consumption of the components.
Table 7 shows the unit resource consumption of major HBM Con-
nect components. The BRAM consumption of HVB is estimated by
multiplying the burst buffer depth and the number of supported
PCs ceiled by a 512 minimum depth. Next, we estimate the number
of components based on the design space and multiply it by the
unit consumption.

Table 7: FPGA resource unit consumption (post-PnR) of ma-
jor components (data bitwidth:512b)

LUT FF DSP BRAM
HLS AXI master 2220 6200 0 15.5

Mux-Demux switch 3748 2130 0 0
HVB 𝐴𝐵𝑈𝐹=64, 8PCs 160 601 0 7.5
HVB 𝐴𝐵𝑈𝐹=128, 8PCs 189 612 0 14.5

Since there are only 5 (𝐶𝑋𝐵𝐴𝑅) × 9 (𝐴𝐵𝑈𝐹) = 45 design spaces
which can be estimated in seconds, we enumerate all design spaces.
The design space exploration result will be presented in Section 8.

8 EXPERIMENTAL RESULT
8.1 Experimental Setup
We use Alveo U280 board for experiment. The board’s FPGA re-
source is shown in Table 8. For programming, we utilize Xilinx’s
Vitis [33] and Vivado HLS [31] 2019.2 tools.

Table 8: FPGA resource on Alveo U280

LUT FF DSP BRAM
1.30M 2.60M 9.02K 2.02K

8.2 Case Study 1: Bucket Sort
In Table 5, we have already presented a quantitative resource-
performance analysis when enlarging the HLS virtual buffer (after
fixing the number of custom crossbar stage). In this section, we first
analyze the effect of varying the number of custom crossbar stages.
We fix the HLS virtual buffer size to 64 for clearer comparison.

The result is shown in Table 6. We only account for the post-PnR
resource consumption of the user logic and exclude the resource
consumption of the the static region, the MCs, and the built-in
crossbars. 𝐵𝑊 2/𝐿𝑈𝑇 , 𝐵𝑊 2/𝐹𝐹 , and 𝐵𝑊 2/𝐵𝑅𝐴𝑀 metrics are nor-
malized to the baseline design with no custom crossbar stage and no
virtual buffer. Larger value of these metrics suggests better designs.

As we add more custom crossbar stages, we can observe a steady
increase of LUT and FF because more switches are needed. Larger
number of custom crossbar stages reduces the data transaction
through the lateral connections and increases the effective band-
width. But as long as more than one AXI masters communicate with
a common PC through the built-in AXI crossbar, the bandwidth loss
due to contention is unavoidable (Section 4.2). When the custom
crossbar (4 stages) completely replaces the built-in crossbar, oneAXI
master communicates with only a single PC. The data received from
multiple PEs is written to the same memory space because the keys
within a bucket does not need to be ordered. The one-to-one con-
nection between an AXI master and a PC removes the contention
in the built-in crossbar, and we can reach the best effective band-
width (203 GB/s). Note that this performance closely approaches
the maximum bandwidth of 206 GB/s (=16 PCs * 12.9GB/s) achieved
with sequential access microbenchmark on 16 PCs (Table 2).

In terms of the resource-performance metrics (𝐵𝑊 2/𝐿𝑈𝑇 ,
𝐵𝑊 2/𝐹𝐹 , and 𝐵𝑊 2/𝐵𝑅𝐴𝑀), the designs with few custom crossbar
stages are much better than the baseline design with no custom
crossbar. For example, the design with two stages of custom cross-
bar and 64 virtual buffer depth per PC is superior by factors of
5.8X/8.0X/5.2X. Even though adding more custom crossbar stages
resulted in an increased resource consumption, the amount of in-
creased effective bandwidth is far greater. This result shows that
memory-bound applications can benefit by adding a few custom
crossbars to reduce the lateral connection communication.

We can observe a very interesting peak in the design point that
has 4 stages custom crossbar. Since this design has the most number
of switches, 𝐵𝑊 2/𝐿𝑈𝑇 is slightly poor (5.3) compared to a design
with two custom crossbar stages (5.8). But in this design, a PE only
needs to communicate with a single bucket in a PC. Thus, we can
infer burst access without an AXI burst buffer and remove the HVB.

The BRAM usage of this design point is lower than others, and
𝐵𝑊 2/𝐵𝑅𝐴𝑀 is superior (9.8). We can deduce that if the data from
multiple PEs can be written to the same memory space and BRAM
is the most precious resource, it might be worth building enough
custom crossbar stages to ensure one-to-one connection between
an AXI master and a PC.

Table 9: Bucket sort’s design points with best 𝐵𝑊 2/𝐿𝑈𝑇 and
𝐵𝑊 2/𝐵𝑅𝐴𝑀 metrics (normalized to a baseline design with
𝐶𝑋𝐵𝐴𝑅=0 and 𝐴𝐵𝑈𝐹=0). Y-axis is the number custom cross-
bar stages and the X-axis is the virtual buffer depth. The best
and the second best designs are in bold.

(𝐵𝑊 2/𝐿𝑈𝑇) (𝐵𝑊 2/𝐵𝑅𝐴𝑀)
0 16 32 64 128 0 16 32 64 128

0 1.0 0.9 2.6 2.3 NA 0 1.0 0.7 2.0 1.4 NA
1 1.0 2.8 6.5 5.1 3.5 1 1.1 2.2 5.2 4.1 2.2
2 0.6 2.4 6.2 5.8 4.7 2 0.7 2.1 5.5 5.2 4.2
3 0.8 2.3 3.8 5.9 5.3 3 1.1 2.3 3.9 6.1 5.5
4 5.3 - - - - 4 9.8 - - - -

Table 9 presents the design space exploration result with a vari-
ous number of custom/built-in crossbar stages and virtual buffer
sizes. We present the numbers for 𝐵𝑊 2/𝐿𝑈𝑇 and 𝐵𝑊 2/𝐵𝑅𝐴𝑀 met-
rics but omit the table for 𝐵𝑊 2/𝐹𝐹 because it has a similar trend as
the 𝐵𝑊 2/𝐿𝑈𝑇 table. In terms of 𝐵𝑊 2/𝐵𝑅𝐴𝑀 metric, (𝐶𝑋𝐵𝐴𝑅=4,
𝐴𝐵𝑈𝐹=0) is the best design point for the reason explained in the
interpretation of Table 6. In terms of 𝐵𝑊 2/𝐿𝑈𝑇 metric, the data
points with 𝐶𝑋𝐵𝐴𝑅=1~3 have similar values and clearly outper-
form data points with (𝐶𝑋𝐵𝐴𝑅=0). This agrees with the result in
Fig. 7(b) where the 2×2 to 8×8 configurations all have a similar
effective bandwidth and are much better than the 16×16 configura-
tion. For both metrics, the design points with 𝐴𝐵𝑈𝐹 less than 16
are not competitive because the effective bandwidth is too small
(Fig. 7). The design points with 𝐴𝐵𝑈𝐹 larger than 64 also are not
competitive because almost an equal amount of read and write is
performed on each PC—the effective bandwidth cannot increase
beyond 6.5 GB/s (=12.9 GB/s ÷ 2) even with a large 𝐴𝐵𝑈𝐹 .

8.3 Case Study 2: Merge Sort
Table 10 shows the design space exploration of merge sort that
uses HBM Connect in its read interconnect. The absolute values
of metrics 𝐵𝑊 2/𝐿𝑈𝑇 and 𝐵𝑊 2/𝐵𝑅𝐴𝑀 are considerably higher
than that of bucket sort for most of the design points. This is be-
cause the read effective bandwidth of the baseline implementation
(𝐶𝑋𝐵𝐴𝑅=0,𝐴𝐵𝑈𝐹=0) is 9.4 GB/s, which is much lower than the
write effective bandwidth (65 GB/s) of the bucket sort baseline
implementation.

As mentioned in Section 4.2, the read operation requires a longer
burst length than the write operation to saturate the effective
bandwidth because the read latency is relatively longer. Thus the
𝐵𝑊 2/𝐿𝑈𝑇 metric reaches the highest point at the burst length
of 128–256, which is larger than the 32–64 burst length observed
in bucket sort (Table 9). 𝐵𝑊 2/𝐵𝑅𝐴𝑀 metric, on the other hand,
reaches the peak at the shorter burst length of 64 because a larger
𝐴𝐵𝑈𝐹 requires more BRAMs.

Table 10: Merge sort’s design points with best 𝐵𝑊 2/𝐿𝑈𝑇 and
𝐵𝑊 2/𝐵𝑅𝐴𝑀 metric (normalized to a baseline design with
𝐶𝑋𝐵𝐴𝑅=0 and 𝐴𝐵𝑈𝐹=0). Y-axis is the number custom cross-
bar stages and the X-axis is the virtual buffer depth.

(𝐵𝑊 2/𝐿𝑈𝑇) (𝐵𝑊 2/𝐵𝑅𝐴𝑀)
0 32 64 128 256 0 32 64 128 256

0 1.0 64 52 NA NA 0 1.0 57 34 NA NA
1 1.8 82 120 100 114 1 1.6 62 66 36 25
2 1.7 88 149 119 168 2 1.6 66 81 42 35
3 1.5 86 141 154 211 3 1.6 70 84 60 48
4 12 85 137 181 191 4 15 70 85 73 46

Similar to bucket sort, replacing the built-in crossbar with a
custom crossbar provides a better performance because there is
less contention in the built-in crossbar. As a result, design points
with 𝐶𝑋𝐵𝐴𝑅=4 or 𝐶𝑋𝐵𝐴𝑅=3 generally have better 𝐵𝑊 2/𝐿𝑈𝑇 and
𝐵𝑊 2/𝐵𝑅𝐴𝑀 . But unlike bucket sort, the peak in 𝐵𝑊 2/𝐵𝑅𝐴𝑀 for
𝐶𝑋𝐵𝐴𝑅=4 does not stand out—it has a similar value as 𝐶𝑋𝐵𝐴𝑅=3.
This is because merge sort needs to read from 16 different mem-
ory spaces regardless of the number of custom crossbar stages
(explained in Section 2.3.2). Each memory space requires a separate
virtual channel in HVB. Thus, we cannot completely remove the
virtual buffer as in the bucket sort.

9 CONCLUSION
We have implemented memory bound applications on a recently re-
leased FPGA HBM board and found that it is difficult to fully exploit
the board’s bandwidth whenmultiple PEs access multiple HBM PCs.
HBM Connect has been developed to meet this challenge. We have
proposed several HLS-compatible optimization techniques such as
the HVB and the mux-demux switch to remove the limitation of
current HLS HBM syntax. We also have tested the effectiveness
of butterfly multi-stage custom crossbar to reduce the contention
in the lateral connection of the built-in crossbar. We found that
adding AXI burst buffers and custom crossbar stages significantly
improves the effective bandwidth. We also found in the case of
bucket sort that completely replacing the built-in crossbar with
a full custom crossbar may provide the best trade-off in terms of
BRAMs if the output from multiple PEs can be written into a single
space. The proposed architecture improves the baseline implemen-
tation by a factor of 6.5X–211X for 𝐵𝑊 2/𝐿𝑈𝑇 metric and 9.8X–85X
for 𝐵𝑊 2/𝐵𝑅𝐴𝑀 metric. As a future work, we plan to apply HBM
Connect to Intel HBM boards and also generalize it beyond the two
cases studied in this paper.

10 ACKNOWLEDGMENTS
This research is in part supported by Xilinx Adaptive Compute
Cluster (XACC) Program, Intel and NSF Joint Research Center
on Computer Assisted Programming for Heterogeneous Architec-
tures (CAPA) (CCF-1723773), NSF Grant on RTML: Large: Accelera-
tion to Graph-Based Machine Learning (CCF-1937599), NIH Award
(U01MH117079), and Google Faculty Award. We thank Thomas
Bollaert, Matthew Certosimo, and David Peascoe at Xilinx for help-
ful discussions and suggestions. We also thank Marci Baun for
proofreading this article.

REFERENCES
[1] ARM. 2011. AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite,

ACE and ACE-Lite. www.arm.com
[2] J. Bakos. 2010. High-performance heterogeneous computing with the Convey

HC-1. IEEE Comput. Sci. Eng. 12, 6 (2010), 80–87.
[3] R. Chen, S. Siriyal, and V. Prasanna. 2015. Energy and memory efficient mapping

of bitonic sorting on FPGA. In Proc. ACM/SIGDA Int. Symp. Field-Programmable
Gate Arrays. 240–249.

[4] Y. Choi, Y. Chi, J. Wang, L. Guo, and J. Cong. 2020. When HLS meets FPGA
HBM: Benchmarking and bandwidth optimization. ArXiv Preprint (2020). https:
//arxiv.org/abs/2010.06075

[5] Y. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei. 2016. A quantitative
analysis on microarchitectures of modern CPU-FPGA platform. In Proc. Ann.
Design Automation Conf. 109–114.

[6] Y. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P. Wei. 2019. In-depth analysis
on microarchitectures of modern heterogeneous CPU-FPGA platforms. ACM
Trans. Reconfigurable Technology and Systems 12, 1 (Feb. 2019).

[7] Y. Choi, P. Zhang, P. Li, and J. Cong. 2017. HLScope+: Fast and accurate perfor-
mance estimation for FPGA HLS. In Proc. IEEE/ACM Int. Conf. Computer-Aided
Design. 691–698.

[8] J. Cong, Z. Fang, M. Lo, H. Wang, J. Xu, and S. Zhang. 2018. Understanding
performance differences of FPGAs and GPUs. In IEEE Ann. Int. Symp. Field-
Programmable Custom Computing Machines. 93–96.

[9] P. Cooke, J. Fowers, G. Brown, and G. Stitt. 2015. A tradeoff analysis of FPGAs,
GPUs, andmulticores for sliding-window applications. ACMTrans. Reconfigurable
Technol. Syst. 8, 1 (Mar. 2015), 1–24.

[10] B. Cope, P. Cheung, W. Luk, and L. Howes. 2010. Performance comparison of
graphics processors to reconfigurable logic: a case study. IEEE Trans. Computers
59, 4 (Apr. 2010), 433–448.

[11] W. J. Dally and C. L. Seitz. 1987. Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Trans. Computers C-36, 5 (May 1987), 547–553.

[12] K. Fleming, M. King, and M. C. Ng. 2008. High-throughput pipelined mergesort.
In Int. Conf. Formal Methods and Models for Co-Design.

[13] Intel. 2020. High Bandwidth Memory (HBM2) Interface Intel FPGA IP User Guide.
https://www.intel.com/

[14] Intel. 2020. Avalon Interface Specifications. https://www.intel.com/
[15] JEDEC. 2020. High Bandwidth Memory (HBM) DRAM. https://www.jedec.org/

standards-documents/docs/jesd235a
[16] H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, and K. Kim. 2017. HBM (High Band-

width Memory) DRAM technology and architecture. In Proc. IEEE Int. Memory
Workshop. 1–4.

[17] S. Lahti, P. Sjövall, and J. Vanne. 2019. Are we there yet? A study on the state of
high-level synthesis. IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems 38, 5 (May 2019), 898–911.

[18] R. Li, H. Huang, Z. Wang, Z. Shao, X. Liao, and H. Jin. 2020. Optimizing memory
performance of Xilinx FPGAs under Vitis. ArXiv Preprint (2020). https://arxiv.
org/abs/2010.08916

[19] A. Lu, Z. Fang, W. Liu, and L. Shannon. 2021. Demystifying the memory system
of modern datacenter FPGAs for software programmers through microbench-
marking. In Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays.

[20] H. Miao, M. Jeon, G. Pekhimenko, K. S. McKinley, and F. X. Lin. 2019. Streambox-
HBM: Stream analytics on high bandwidth hybrid memory. In Proc. Int. Conf.
Architectural Support for Programming Languages and Operating Systems. 167–
181.

[21] D. Molka, D. Hackenberg, and R. Schöne. 2014. Main memory and cache perfor-
mance of Intel Sandy Bridge and AMD Bulldozer. In Proc. Workshop on Memory
Systems Performance and Correctness. 1–10.

[22] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T.
Liew, K. Srivatsan, D. Moss, S. Subhaschandra, and G. Boudoukh. 2017. Can
FPGAs beat GPUs in accelerating next-generation deep neural networks?. In
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays. 5–14.

[23] Nvidia. 2020. Nvidia Titan V. https://www.nvidia.com/en-us/titan/titan-v/
[24] J. Park, P. Diniz, and K. Shayee. 2004. Performance and area modeling of complete

FPGA designs in the presence of loop transformations. IEEE Trans. Computers
53, 11 (Sept. 2004), 1420–1435.

[25] M. Saitoh, E. A. Elsayed, T. V. Chu, S. Mashimo, and K. Kise. 2018. A high-
performance and cost-effective hardware merge sorter without feedback datapath.
In IEEE Ann. Int. Symp. Field-Programmable Custom Computing Machines. 197–
204.

[26] N. Samardzic, W. Qiao, V. Aggarwal, M. F. Chang, and J. Cong. 2020. Bonsai: High-
performance adaptive merge tree sorting. In Ann. Int. Symp. Comput. Architecture.
282–294.

[27] Z. Wang, H. Huang, J. Zhang, and G. Alonso. 2020. Shuhai: Benchmarking
High Bandwidth Memory on FPGAs. In IEEE Ann. Int. Symp. Field-Programmable
Custom Computing Machines.

[28] Xilinx. 2020. Alveo U280 Data Center Accelerator Card User Guide.
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-

cards/ug1314-u280-reconfig-accel.pdf
[29] Xilinx. 2020. Alveo U50 Data Center Accelerator Card User Guide.

https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-
cards/ug1371-u50-reconfig-accel.pdf

[30] Xilinx. 2020. AXI High Bandwidth Memory Controller v1.0. https://www.xilinx.
com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf

[31] Xilinx. 2020. Vivado High-level Synthesis (UG902). https://www.xilinx.com/
[32] Xilinx. 2020. UltraScale Architecture Memory Resources (UG573). https://www.

xilinx.com/
[33] Xilinx. 2020. Vitis Unified Software Platform. https://www.xilinx.com/products/

design-tools/vitis/vitis-platform.html

https://developer.arm.com/docs/ihi0022/d
https://developer.arm.com/docs/ihi0022/d
www.arm.com
https://aip.scitation.org/doi/abs/10.1109/MCSE.2010.135
https://aip.scitation.org/doi/abs/10.1109/MCSE.2010.135
https://dl.acm.org/doi/abs/10.1145/2684746.2689068
https://dl.acm.org/doi/abs/10.1145/2684746.2689068
https://arxiv.org/abs/2010.06075
https://arxiv.org/abs/2010.06075
http://dl.acm.org/citation.cfm?id=2897972
http://dl.acm.org/citation.cfm?id=2897972
https://dl.acm.org/citation.cfm?id=3294054
https://dl.acm.org/citation.cfm?id=3294054
https://ieeexplore.ieee.org/document/8203844
https://ieeexplore.ieee.org/document/8203844
https://ieeexplore.ieee.org/abstract/document/8457638
https://ieeexplore.ieee.org/abstract/document/8457638
https://dl.acm.org/doi/abs/10.1145/2659000
https://dl.acm.org/doi/abs/10.1145/2659000
https://ieeexplore.ieee.org/abstract/document/5374368
https://ieeexplore.ieee.org/abstract/document/5374368
https://ieeexplore.ieee.org/document/1676939
https://ieeexplore.ieee.org/document/1676939
https://ieeexplore.ieee.org/abstract/document/4547704
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-20031.pdf
https://www.intel.com/
https://www.intel.com/content/www/us/en/programmable/documentation/nik1412467993397.html
https://www.intel.com/
https://www.jedec.org/standards-documents/docs/jesd235a
https://www.jedec.org/standards-documents/docs/jesd235a
https://ieeexplore.ieee.org/abstract/document/7939084
https://ieeexplore.ieee.org/abstract/document/7939084
https://ieeexplore.ieee.org/document/8356004
https://ieeexplore.ieee.org/document/8356004
https://arxiv.org/abs/2010.08916
https://arxiv.org/abs/2010.08916
https://dl.acm.org/doi/abs/10.1145/3297858.3304031
https://dl.acm.org/doi/abs/10.1145/3297858.3304031
https://dl.acm.org/doi/abs/10.1145/2618128.2618129
https://dl.acm.org/doi/abs/10.1145/2618128.2618129
https://dl.acm.org/doi/abs/10.1145/3020078.3021740
https://dl.acm.org/doi/abs/10.1145/3020078.3021740
https://www.nvidia.com/en-us/titan/titan-v/
https://ieeexplore.ieee.org/abstract/document/1336763
https://ieeexplore.ieee.org/abstract/document/1336763
https://ieeexplore.ieee.org/abstract/document/8457653
https://ieeexplore.ieee.org/abstract/document/8457653
https://www.iscaconf.org/isca2020/papers/466100a282.pdf
https://www.iscaconf.org/isca2020/papers/466100a282.pdf
https://wangzeke.github.io/doc/shuhai_fccm_20.pdf
https://wangzeke.github.io/doc/shuhai_fccm_20.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-cards/ug1314-u280-reconfig-accel.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-cards/ug1314-u280-reconfig-accel.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-cards/ug1371-u50-reconfig-accel.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/accelerator-cards/ug1371-u50-reconfig-accel.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/
https://www.xilinx.com/support/documentation/user_guides/ug573-ultrascale-memory-resources.pdf
https://www.xilinx.com/
https://www.xilinx.com/
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

	Abstract
	1 Introduction
	2 Background
	2.1 High Bandwidth Memory 2
	2.2 HBM2 FPGA Platforms and Built-In Crossbar
	2.3 Case Studies
	2.4 Conventional HLS Programming for Bucket Sort

	3 Design Space and Problem Formulation
	4 Built-in Crossbar and HBM
	4.1 Single PC Characteristics
	4.2 Many-to-Many Unicast Characteristics

	5 Custom Crossbar
	5.1 Network Topology
	5.2 Mux-Demux Switch

	6 AXI Burst Buffer
	6.1 Direct Access from PE to AXI Master
	6.2 FIFO-Based Burst Buffer
	6.3 HLS Virtual Buffer

	7 Design Space Exploration
	8 Experimental Result
	8.1 Experimental Setup
	8.2 Case Study 1: Bucket Sort
	8.3 Case Study 2: Merge Sort

	9 Conclusion
	10 Acknowledgments
	References

