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Problem

« HLS designs often suffer from low frequency

. Hard to fix the problem

void kernel( module kernel() WARNING: failed to reach
*dram_porto, begin timing target
*result) » dram_M_AXI_AVALID » ......
{ result_S_AXI_AR
...... ERROR: routing failed
} end | |
My beautiful C++ Machine-generated RTL 2?77

Hard to read...



Reason 1: Abstraction Gap

o HLS has no physical layout information
o How far will these two registers be apart?
- How congested will the area be?

o Current HLS relies on inaccurate pre-characterized delay models
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Reason 1: Abstraction Gap

o HLS has no physical layout information
o How far will these two registers be apart?
- How congested will the area be?

o Current HLS relies on inaccurate pre-characterized delay models

Critical paths

void top() { LS ;fjgr Crit
= foo(...)5 ) always @ (posedge ap_clk)
bar( s eee)s bar_in <= foo_out; ‘ foo bar

}

Source C++ code HLS registers the connection once This is possible (and common!)
(which looks reasonable)



Reason 2: FPGA Complexity

FPGAs are increasingly large

Multiple dies integrated together
High delay penalty for die-crossing

o~ 1ns [Pereira FPGA’'14]

Large IPs with pre-determined location
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Reason 2: FPGA Complexity

FPGAs are increasingly large
Multiple dies integrated together
High delay penalty for die-crossing

o~ 1ns [Pereira FPGA’'14]

Large IPs with pre-determined location

DDR controllers
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Peripheral IPs (e.g.,
PCle)
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Reason 2: FPGA Complexity

FPGAs are increasingly large
Multiple dies integrated together
High delay penalty for die-crossing

o~ 1ns [Pereira-2014]

Large IPs with pre-determined location

Non-programmable
region

Xilinx Alveo Xilinx Alveo
U250 U280
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Reason 2: FPGA Complexity

HLS has limited consideration of those
physical barriers
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HLS has limited consideration of those
physical barriers

Placer often needs to pack things together to
reduce die crossing

o Increase local congestion instead

Reason 2: D?ii

Systolic array
on U250
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Reason 2:

HBM-0  HBM-1

HLS has limited consideration of those
physical barriers

Placer often needs to pack things together to
reduce die crossing

o Increase local congestion instead

Sub-optimal choice of crossing wires by

the placer / router Systolic array Stencil accelerator
on U250 on U280
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Opportunities and Challenges

HLS has the freedom to alter the scheduling solution
o Potentially add more pipelining

But where and how many?

Will performance (cycle count) be affected?

. "
Scalability of the method” foo0 |—»
f”‘v
void top() { | T
= foo(...); -
S I —— + L p
bar( s eee)s T > o0
} ~~~~~~~~~
which? | foo [

bar

bar

bar
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Previous Attempts

» Existing efforts focus on fine-grained delay model calibration
o [Zheng-FPGA’12] Iteratively place & route to calibrate delay information for HLS

o [Cong-2004] Placement-driven scheduling and binding
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» Existing efforts focus on fine-grained delay model calibration
o [Zheng-FPGA’12] Iteratively place & route to calibrate delay information for HLS
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o Not scalable, limited to tiny designs (only ~1000s of LUTSs)

o Our benchmarks can be 100X larger and many take days to implement
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Previous Attempts

» Existing efforts focus on fine-grained delay model calibration
o [Zheng-FPGA’12] Iteratively place & route to calibrate delay information for HLS

o [Cong-2004] Placement-driven scheduling and binding
o Not scalable, limited to tiny designs (only ~1000s of LUTSs)

o Our benchmarks can be 100X larger and many take days to implement

o Placer and router may not behave as expected
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Core ldea

o Floorplan the design during HLS compilation

o In a coarse granularity

« Add additional pipelining based on floorplan results

o Guarantee no loss of performance

Original
Approach

Conventional Placement

r

\

...................... HLS

Coarse-grain

N b Detail Placement
Floorplanning
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Core ldea

o Floorplan the design during HLS compilation

o In a coarse granularity

« Add additional pipelining based on floorplan results

o Guarantee no loss of performance

Original
Approach

Proposed
Approach

Conventional Placement

r

\

HLS

Coarse-grain
Floorplanning

Detail Placement

Floorplan-Guided HLS
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Core Idea
o Floorplan the design during HLS compilation
o In a coarse granularity
« Add additional pipelining based on floorplan results

o Guarantee no loss of performance

Conventional Placement

Original
Approach Ve N\

T —
...................... HLS nann oarse graln snmusl Detall Placement T
Floorplanning

\ )
Proposed Y

Approach Floorplan-Guided HLS » Optimized RTL .
Floorplan Constraint
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Framewo rk Overview 0 Integrate Top-Down Physical Planning with HLS
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Framework Overview

Source Code

..................................... 1 ..................................

HLS Scheduling & Binding
¥
Coarse-Grained Floorplanning

¥
Floorplan-Aware Pipelining

¥ v
RTL Constraint :
Generation Generation i AutoBridge
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Optimized Floorplanning
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Synthesis, Placement, Routing
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Coarse-Grained Floorplanning

o Divide the FPGA into a grid of slots
e Assign each HLS function to one slot
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Coarse-Grained Floorplanning

o Divide the FPGA into a grid of slots

e Assign each HLS function to one slot

o Limit the resource utilization in each slot

o Minimize the count of crossing-boundary wires
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Coarse-Grained Floorplanning

o Divide the FPGA into a grid of slots

e Assign each HLS function to one slot

o Limit the resource utilization in each slot

o Minimize the count of crossing-boundary wires
o Itis OK to have ultra-long connections

o Will be pipelined later
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Coarse-Grained Floorplanning

o Divide the FPGA into a grid of slots
e Assign each HLS function to one slot
o Use ILP to iteratively partition the design

Initial State

The initial cell
representing
the FPGA device

# variables == # HLS functions
# constraints == # connections

# items in goal == # connections

Usual runtime < 10s
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Coarse-Grained Floorplanning

o Divide the FPGA into a grid of slots
e Assign each HLS function to one slot
o Use ILP to iteratively partition the design

Initial State

Iteration 1

The initial cell  The initial cell

representing

is divided into

the FPGA device two child cells.

# variables == # HLS functions
# constraints == # connections

# items in goal == # connections
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Coarse-Grained Floorplanning

o Divide the FPGA into a grid of slots
e Assign each HLS function to one slot
o Use ILP to iteratively partition the design

Initial State

Iteration 1

Iteration 2

o

oo

The initial cell  The initial cell

representing

is divided into

the FPGA device two child cells.

Each cell is divided;
ro divided into rq,
ro1; M iNtO ryg, i1

# variables == # HLS functions
# constraints == # connections

# items in goal == # connections

Usual runtime < 10s
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Coarse-Grained Floorplanning

o Divide the FPGA into a grid of slots

e Assign each HLS function to one slot

o Use ILP to iteratively partition the design
o Pipeline the cross-slot connections

Initial State

Iteration 1

Iteration 2

row

Iteration 3

o

oA

r
(4)
)
0-fasy

oo

The initial cell  The initial cell

representing

is divided into

the FPGA device two child cells.

Each cell is divided;
ro divided into rq,
ro1; M iNto ryg, i1

0 1

Eventually form a
2x4 grid of cells

col
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Framework Overview
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Pipeline Data Transfer Logic

o We focus on flow-control interfaces (e.g., FIFO, AXI)
e Assume a dataflow programming model
o Can be extended to non-flow-control interface

o Refer to our paper for details

Producer FIFO Consumer

: almost_full

: wr_enable

: dat
data +|Z'—?|Z'M> —)- | data

Die
boundaries,
large IPs, etc.



Address the Performance Concern
o Focus on when modules communicate through FIFOs
o Hard to statically analyze the impact of additional latency
o The additional latency may cause throughput decrease
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Address the Performance Concern

o Focus on when modules communicate through FIFOs
o Hard to statically analyze the impact of additional latency
o The additional latency may cause throughput decrease

Note that each FIFO is being accessed by an arbitrary function
= Different from simplified model such as the Synchronous Data Flow (SDF)
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Address the Performance Concern

e Focus on when modules communicate through FIFOs
o Hard to statically analyze the impact of additional latency
o The additional latency may cause throughput decrease
e Adapt cut-set pipelining
o Add the same latency to all edges in a cut
o Equivalent to balancing the latency of reconvergent paths

[ Pipeline inter-slot connections
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Address the Performance Concern

e Focus on when modules communicate through FIFOs
o Hard to statically analyze the impact of additional latency
o The additional latency may cause throughput decrease
e Adapt cut-set pipelining
o Add the same latency to all edges in a cut
o Equivalent to balancing the latency of reconvergent paths

[ Pipeline inter-slot connections

[ Balance the latency of all paths
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Address the Performance Concern

e Focus on when modules communicate through FIFOs
o Hard to statically analyze the impact of additional latency
o The additional latency may cause throughput decrease
e Adapt cut-set pipelining
o Add the same latency to all edges in a cut
o Equivalent to balancing the latency of reconvergent paths

How to minimize
area overhead?
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Address the Performance Concern

e Focus on when modules communicate through FIFOs
o Hard to statically analyze the impact of additional latency
o The additional latency may cause throughput decrease
e Adapt cut-set pipelining
o Add the same latency to all edges in a cut
o Equivalent to balancing the latency of reconvergent_paths

How to minimize
area overhead?
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Latency Balancing with Minimal Area Overhead

Problem: balance the latency of every pair of reconvergent paths with min area.
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Latency Balancing with Minimal Area Overhead

Problem: balance the latency of every pair of reconvergent paths with min area.
e Assign variable S, for each vertex v

o Analogous to the “arrival time” in static timing analysis

o (Sy—S,) represents the latency of all path between vertex x and y
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Latency Balancing with Minimal Area Overhead

Problem: balance the latency of every pair of reconvergent paths with min area.

e Assign variable S, for each vertex v
o Analogous to the “arrival time” in static timing analysis
o (Sy—S,) represents the latency of all path between vertex x and y

e Foranedgee,, (S,—S,) is no less than the additional latency needed for this edge
e Minimize the area overhead

1 unit of

%)
w
v IV IV
2}
N

min.  (Sy - S4) +(Sy - Sp) +(S; - Ss)
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Latency Balancing with Minimal Area Overhead

Problem: balance the latency of every pair of reconvergent paths with min area.

e Assign variable S, for each vertex v
o Analogous to the “arrival time” in static timing analysis
o (Sy—S,) represents the latency of all path between vertex x and y

e Foranedgee,, (S,—S,) is no less than the additional latency needed for this edge
e Minimize the area overhead

S, 2 S,+1
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Latency Balancing with Minimal Area Overhead

Problem: balance the latency of every pair of reconvergent paths with min area.

e Assign variable S, for each vertex v
o Analogous to the “arrival time” in static timing analysis
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Latency Balancing with Minimal Area Overhead

Problem: balance the latency of every pair of reconvergent paths with min area.

e Assign variable S, for each vertex v
o Analogous to the “arrival time” in static timing analysis
o (Sy—S,) represents the latency of all path between vertex x and y

e Foranedgee,, (S,—S,) is no less than the additional latency needed for this edge
e Minimize the area overhead
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Latency Balancing with Minimal Area Overhead

Problem: balance the latency of every pair of reconvergent paths with min area.

e Assign variable S, for each vertex v
o Analogous to the “arrival time” in static timing analysis
o (Sy—S,) represents the latency of all path between vertex x and y

e Foranedgee,, (S,—S,) is no less than the additional latency needed for this edge
e Minimize the area overhead

1 unit of

i)
v v iv Vv
(95}
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+
—

O umnh
A A
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Latency Balancing with Minimal Area Overhead

Problem: balance the latency of every pair of reconvergent paths with min area.

e Assign variable S, for each vertex v
o Analogous to the “arrival time” in static timing analysis
o (Sy—S,) represents the latency of all path between vertex x and y

e Foranedgee,, (S,—S,) is no less than the additional latency needed for this edge
e Minimize the area overhead
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Latency Balancing with Minimal Area Overhead

Problem: balance the latency of every pair of reconvergent paths with min area.

e Assign variable S, for each vertex v
o Analogous to the “arrival time” in static timing analysis
o (Sy—S,) represents the latency of all path between vertex x and y

e Foranedgee,, (S,—S,) is no less than the additional latency needed for this edge
e Minimize the area overhead

1 unit of

S, 2 S,+1

S,=2 S, System of Difference Constraints
S, =2 S, (Polynomial Time Solvable)
S; =2 S,

Sy, = S,

min.  (S; - S4) +(S; - S5) + (S - S)
+2(S;5-S4) *+(So - Sy) 52



Benchmarks

! DDR-0 DDR-1 DDR-0 DDR-1
: CNN (Wang-ICCAD’18) i Gaussian Elimination (Wang-FPGA’21) | PageRank (Chi-Arcxiv’20)
: DDR-0 :

HBM-1 §
DDR-0 :

{ DDR-1

DDR-2} DDR-2

o A total of 43 design configurations

e 16 of them originally failed in routing

e From 147 MHz to 297 MHz on average (~2X)

o Negligible difference in resource utilization or cycle count.

HBM-7 |
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Case Study 1

<300
I
= 200

<
£ 100
[T

0

Stencil Computation, 16 configurations

Opt: avg 266 MHz (3.1X) Opt: avg. 273 MHz (3.9X)

HBM-0 HBM-1

€

NP D D RS N R 2 X2 D RN S D P 2
R ‘LQ e WA I N v K ‘LQ Podd S Nl v

Default: avg. 86 MHz

o O O O

U280 --@® - Original - - AutoBridge U250

Default: avg. 69 MHz
Difference in Resource Utilization

LUT: -0.26%

FF: +0.78%

BRAM: +4.68%

DSP: +0.00%

Default AutoBridge
Comparison of the 4-PE Design on U280
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Case Study 2

DDR-0

DDR-1

DDR-2

e Gaussian Elimination, 8 configurations
Opt: avg. 334 MHz (1.4X) Opt: avg. 335 MHz (1.5X)
400
¥ 300 LSV —  m—
2 200 A
@ 100 _
= 3
12x12  16x16 20x20 24x24  12x12 16x16 20x20 24x24
U250 -.@ - Original - - AutoBridge U280
Default: avg. 245 MHz Default: avg. 223 MHz
e Difference in Resource Utilization
o LUT:-0.14%
o  FF:-0.04%
o BRAM:-0.03%
o DSP: +0.00%

Default AutoBridge

Comparison of the 24x24 Design on U250
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Case Study 3

400
g 300
< 200
©
£ 100
[T

0

CNN Accelerator, 14 configurations

Opt: avg. 316 MHz (2.3X)  Opt: avg. 328 MHz (1.5X)

DS S e VAN . [ & & =i
*--0--0--@ . . . .
\.\ ',' A\ v'/

\"-’@ \"9& \“—’*@ \“-’& ,\'b*:\Q ,\'b*:\m\’b*:\b‘ ,{5‘:\@ \"-’@ \”-’+b‘ \“—’*@ \(’-’@ ,\fb*:\Q ,\'b*:\q/
U250 -.@ - Original -~ - AutoBridge U280
Default: avg. 140 MHz Default: avg. 214 MHz
Difference in Resource Utilization

o LUT:-0.08%

o FF:-0.16%

o BRAM:-0.02%
o DSP: +0.00%

DDR-0

DDR-1

DDR-2

Default AutoBridge

Comparison of the 16x13 Design on U250
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Impact of Pipelining and Floorplanning

o Isit possible that only one of them is the key factor?
o Baseline: (-) floorplanning, 8 slots (-) pipelining
o AutoBridge: (+) floorplanning, 8 slots (-) pipelining
o Case 1: (-) floorplanning (+) pipelining

o

400
N300 e —
_____________________________ A,
2200 | % . il i A . .
o P
2100
L S P
0 - . o .
13x2 13x4 13x6 13x8 13x10 13x12 13x14 13x16
--@--0Original ---a--Pipe. w/o Constraints —¢— AutoBridge No Horizontal Parition

Control Experiments Based on Systolic Arrays on U250
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Projects Using AutoBridge

e AutoSA: Polyhedral-Based Systolic Array Auto-Compilation
o https://qithub.com/UCLA-VAST/AutoSA

e TAPA: Extending High-Level Synthesis for Task-Parallel Programs
o  https://qithub.com/Blaok/tapa

e Acceleration of Bayesian Network Inference (in submission)

e Acceleration of Single-Source-Shortest-Path algorithm (in submission)

@ github.com
& Licheng-Guo / AutoBridge

[FPGA 2021, Best Paper Candidate] An automated floorplanning and pipelining tool for
Vivado HLS.

& vast.cs.ucla.edu/sites/default/files/publications/autobridge_fpga2021.pdf https //q Ith u b Com/l—IChenq_GUO/AUtOBrque

88 MIT License
Y¢ 30stars % O forks

% Star & Watch
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https://github.com/UCLA-VAST/AutoSA
https://github.com/Blaok/tapa

Thank You!
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