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Problem
● HLS designs often suffer from low frequency
● Hard to fix the problem
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void kernel(
float *dram_port0,
float *result)

{ 
...... 

}

module kernel()
begin

wire dram_M_AXI_AVALID
wire result_S_AXI_AR
…

end

My beautiful C++ Machine-generated RTL
Hard to read…

WARNING: failed to reach 
timing target
......

ERROR: routing failed
......

???



Reason 1: Abstraction Gap
● HLS has no physical layout information

○ How far will these two registers be apart?

○ How congested will the area be?

● Current HLS relies on inaccurate pre-characterized delay models
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always @ (posedge ap_clk)
bar_in <= foo_out;

HLS registers the connection once
(which looks reasonable) 

void top() {
temp = foo(...);
bar(temp, ...);

}

Source C++ code

HLS



Reason 1: Abstraction Gap
● HLS has no physical layout information

○ How far will these two registers be apart?

○ How congested will the area be?

● Current HLS relies on inaccurate pre-characterized delay models
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always @ (posedge ap_clk)
bar_in <= foo_out; foo bar

HLS registers the connection once
(which looks reasonable) 

Critical paths

This is possible (and common!)

void top() {
temp = foo(...);
bar(temp, ...);

}

Source C++ code

HLS
Placer
Router



Reason 2: FPGA Complexity
● FPGAs are increasingly large
● Multiple dies integrated together

● High delay penalty for die-crossing

○ ~ 1ns [Pereira FPGA’14]

● Large IPs with pre-determined location
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Reason 2: FPGA Complexity
● FPGAs are increasingly large
● Multiple dies integrated together

● High delay penalty for die-crossing

○ ~ 1ns [Pereira-2014]

● Large IPs with pre-determined location
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Non-programmable
region
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Reason 2: FPGA Complexity
● HLS has limited consideration of those 

physical barriers
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Reason 2:
● HLS has limited consideration of those 

physical barriers

● Placer often needs to pack things together to 
reduce die crossing

○ Increase local congestion instead
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Reason 2:
● HLS has limited consideration of those 

physical barriers

● Placer often needs to pack things together to 
reduce die crossing

○ Increase local congestion instead

● Sub-optimal choice of crossing wires by 
the placer / router
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Default Floorplan-Guided

Die 0

Die 1

Die 2

Die 3

Default Floorplan-Guided
Systolic array

on U250
Stencil accelerator

on U280

HBM-0 HBM-1

…

…

…

… … …

DDR-0

DDR-1



Opportunities and Challenges
● HLS has the freedom to alter the scheduling solution

○ Potentially add more pipelining

● But where and how many?

● Will performance (cycle count) be affected?

● Scalability of the method?
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void top() {
temp = foo(...);
bar(temp, ...);

}

foo bar

foo bar

foo barwhich?



Previous Attempts
● Existing efforts focus on fine-grained delay model calibration

○ [Zheng-FPGA’12] Iteratively place & route to calibrate delay information for HLS

○ [Cong-2004] Placement-driven scheduling and binding
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Previous Attempts
● Existing efforts focus on fine-grained delay model calibration

○ [Zheng-FPGA’12] Iteratively place & route to calibrate delay information for HLS

○ [Cong-2004] Placement-driven scheduling and binding

● Not scalable, limited to tiny designs (only ~1000s of LUTs)

○ Our benchmarks can be 100X larger and many take days to implement

● Placer and router may not behave as expected
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Core Idea
● Floorplan the design during HLS compilation

○ In a coarse granularity

● Add additional pipelining based on floorplan results

○ Guarantee no loss of performance
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Core Idea
● Floorplan the design during HLS compilation

○ In a coarse granularity

● Add additional pipelining based on floorplan results

○ Guarantee no loss of performance
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HLS Coarse-grain 
Floorplanning Detail Placement

Conventional Placement

Floorplan-Guided HLS

Original 
Approach

Proposed 
Approach Optimized RTL

Floorplan Constraint



Framework Overview
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The initial cell 
representing 

the FPGA device

The initial cell 
is divided into 
two child cells. 

Eventually form a 
2x4 grid of cells

Each cell is divided;
r0 divided into r00 ,
r01; r1 into r10 , r11

Initial State Iteration 1 Iteration 2 Iteration 3
r0

r1

r00

r01

r10

r11

row

col0 1

0

1

2

3

B

Integrate Top-Down Physical Planning with HLS

Pipelining with Min. Area and Lossless Throughput
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Coarse-Grained Floorplanning
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● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
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● Assign each HLS function to one slot
● Limit the resource utilization in each slot

limit resource usage (e.g., 70%)
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Coarse-Grained Floorplanning
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● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
● Limit the resource utilization in each slot
● Minimize the count of crossing-boundary wires
● It is OK to have ultra-long connections

○ Will be pipelined later



Coarse-Grained Floorplanning
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● Use ILP to iteratively partition the design

# variables == # HLS functions
# constraints == # connections
# items in goal == # connections
Usual runtime < 10s
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Coarse-Grained Floorplanning
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Coarse-Grained Floorplanning

31

The initial cell 
representing 

the FPGA device

The initial cell 
is divided into 
two child cells. 

Eventually form a 
2x4 grid of cells

Each cell is divided;
r0 divided into r00 ,
r01; r1 into r10 , r11

Initial State Iteration 1 Iteration 2 Iteration 3
r0

r1

r00

r01

r10

r11

row

col0 1

0

1

2

3

● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
● Use ILP to iteratively partition the design
● Pipeline the cross-slot connections



Framework Overview
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Pipeline Data Transfer Logic
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almost_full

wr_enable

wr_data

full

wr_en

data

empty

read

data

Producer ConsumerFIFO

Die 
boundaries, 

large IPs, etc.

● We focus on flow-control interfaces (e.g., FIFO, AXI)
● Assume a dataflow programming model
● Can be extended to non-flow-control interface

○ Refer to our paper for details



Address the Performance Concern
● Focus on when modules communicate through FIFOs

○ Hard to statically analyze the impact of additional latency
○ The additional latency may cause throughput decrease
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Note that each FIFO is being accessed by an arbitrary function
Þ Different from simplified model such as the Synchronous Data Flow (SDF)



Address the Performance Concern
● Focus on when modules communicate through FIFOs

○ Hard to statically analyze the impact of additional latency
○ The additional latency may cause throughput decrease

● Adapt cut-set pipelining 
○ Add the same latency to all edges in a cut
○ Equivalent to balancing the latency of reconvergent paths
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Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
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Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v 
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S1   ≥  S2 + 1
S2 ≥  S4
S1   ≥  S3
S3   ≥  S4
S0   ≥  S1

2

1

3

4

w=2w=1

0

1 unit of 
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min.     (S2  - S4) + (S1  - S2) + (S1  - S3)
+ 2 (S3  - S4) + (S0  - S1)

System of Difference Constraints
(Polynomial Time Solvable)



Benchmarks
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… …

…

…

…

… … …

… … … …

Stencil Computation (Chi-ICCAD’18) Genome Sequencing (Guo-FCCM’19)

CNN (Wang-ICCAD’18) PageRank (Chi-Arcxiv’20)

Bucket Sort (Qiao-ISCA’20)

…

… … …… …

DDR-0 DDR-1 DDR-1DDR-0

HBM-0

HBM-1

HBM-7

HBM-8

HBM-9

HBM-15

DDR-0

DDR-1

DDR-2
HBM-0

HBM-1

HBM-7

Gaussian Elimination (Wang-FPGA’21)

DDR-0

DDR-1
DDR-2

● A total of 43 design configurations 
● 16 of them originally failed in routing 
● From 147 MHz to 297 MHz on average (~2X)
● Negligible difference in resource utilization or cycle count.



Case Study 1
● Stencil Computation, 16 configurations
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…

HBM-0 HBM-1

Default Floorplan-Guided
Comparison of the 4-PE Design on U280 

● Difference in Resource Utilization
○ LUT: -0.26%
○ FF: +0.78%
○ BRAM: +4.68%
○ DSP: +0.00%

AutoBridgeDefault

Default: avg. 86 MHz Default: avg. 69 MHz

Opt: avg 266 MHz (3.1X) Opt: avg. 273 MHz (3.9X)



Case Study 2
● Gaussian Elimination, 8 configurations
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DDR-0

DDR-1

DDR-2

● Difference in Resource Utilization
○ LUT: -0.14%
○ FF: -0.04%
○ BRAM: -0.03%
○ DSP: +0.00%

Comparison of the 24x24 Design on U250 

AutoBridgeDefault

Default: avg. 245 MHz Default: avg. 223 MHz

Opt: avg. 334 MHz (1.4X) Opt: avg. 335 MHz (1.5X)



Case Study 3
● CNN Accelerator, 14 configurations
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…

…

…

… … …

DDR-0

DDR-1

DDR-2

● Difference in Resource Utilization
○ LUT: -0.08%
○ FF: -0.16%
○ BRAM: -0.02%
○ DSP: +0.00%

Comparison of the 16x13 Design on U250 

AutoBridgeDefault

Default: avg. 140 MHz Default: avg. 214 MHz

Opt: avg. 316 MHz (2.3X) Opt: avg. 328 MHz (1.5X)



Impact of Pipelining and Floorplanning
● Is it possible that only one of them is the key factor?

○ Baseline: (-) floorplanning, 8 slots (-) pipelining 

○ AutoBridge: (+) floorplanning, 8 slots (-) pipelining 

○ Case 1: (-) floorplanning (+) pipelining 

○ Case 2: (+) floorplanning, 4 slots (neglect the DDRs) (-) pipelining 

57Control Experiments Based on Systolic Arrays on U250



Projects Using AutoBridge
● AutoSA: Polyhedral-Based Systolic Array Auto-Compilation

○ https://github.com/UCLA-VAST/AutoSA

● TAPA: Extending High-Level Synthesis for Task-Parallel Programs

○ https://github.com/Blaok/tapa

● Acceleration of Bayesian Network Inference (in submission)

● Acceleration of Single-Source-Shortest-Path algorithm (in submission)
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Thank You!
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