
AutoBridge: Coupling Coarse-Grained
Floorplanning with Pipelining for High-
Frequency HLS Design on Multi-Die FPGAs
Licheng Guo1, Yuze Chi1, Jie Wang1, Jason Lau1, Weikang Qiao1, Ecenur Ustun2,
Zhiru Zhang2, Jason Cong1

University of California Los Angeles1, Cornell Unversity2
lcguo@ucla.edu
https://github.com/Licheng-Guo/AutoBridge

https://github.com/Licheng-Guo/AutoBridge

Problem
● HLS designs often suffer from low frequency
● Hard to fix the problem

2

void kernel(
float *dram_port0,
float *result)

{
......

}

module kernel()
begin

wire dram_M_AXI_AVALID
wire result_S_AXI_AR
…

end

My beautiful C++ Machine-generated RTL
Hard to read…

WARNING: failed to reach
timing target
......

ERROR: routing failed
......

???

Reason 1: Abstraction Gap
● HLS has no physical layout information

○ How far will these two registers be apart?

○ How congested will the area be?

● Current HLS relies on inaccurate pre-characterized delay models

3

Reason 1: Abstraction Gap
● HLS has no physical layout information

○ How far will these two registers be apart?

○ How congested will the area be?

● Current HLS relies on inaccurate pre-characterized delay models

4

always @ (posedge ap_clk)
bar_in <= foo_out;

HLS registers the connection once
(which looks reasonable)

void top() {
temp = foo(...);
bar(temp, ...);

}

Source C++ code

HLS

Reason 1: Abstraction Gap
● HLS has no physical layout information

○ How far will these two registers be apart?

○ How congested will the area be?

● Current HLS relies on inaccurate pre-characterized delay models

5

always @ (posedge ap_clk)
bar_in <= foo_out; foo bar

HLS registers the connection once
(which looks reasonable)

Critical paths

This is possible (and common!)

void top() {
temp = foo(...);
bar(temp, ...);

}

Source C++ code

HLS
Placer
Router

Reason 2: FPGA Complexity
● FPGAs are increasingly large
● Multiple dies integrated together

● High delay penalty for die-crossing

○ ~ 1ns [Pereira FPGA’14]

● Large IPs with pre-determined location

6

Xilinx Alveo
U250

Xilinx Alveo
U280

Reason 2: FPGA Complexity

7

Die boundaries

Xilinx Alveo
U250

Xilinx Alveo
U280

● FPGAs are increasingly large
● Multiple dies integrated together

● High delay penalty for die-crossing

○ ~ 1ns [Pereira FPGA’14]

● Large IPs with pre-determined location

Reason 2: FPGA Complexity
● FPGAs are increasingly large
● Multiple dies integrated together

● High delay penalty for die-crossing

○ ~ 1ns [Pereira FPGA’14]

● Large IPs with pre-determined location

8

DDR controllers

Peripheral IPs (e.g.,
PCIe)

Xilinx Alveo
U250

Xilinx Alveo
U280

Reason 2: FPGA Complexity
● FPGAs are increasingly large
● Multiple dies integrated together

● High delay penalty for die-crossing

○ ~ 1ns [Pereira FPGA’14]

● Large IPs with pre-determined location

9

HBM Controller

Xilinx Alveo
U250

Xilinx Alveo
U280

Reason 2: FPGA Complexity
● FPGAs are increasingly large
● Multiple dies integrated together

● High delay penalty for die-crossing

○ ~ 1ns [Pereira-2014]

● Large IPs with pre-determined location

10

Non-programmable
region

Xilinx Alveo
U250

Xilinx Alveo
U280

Reason 2: FPGA Complexity
● HLS has limited consideration of those

physical barriers

11

Reason 2:
● HLS has limited consideration of those

physical barriers

● Placer often needs to pack things together to
reduce die crossing

○ Increase local congestion instead

12

Default Floorplan-Guided

Die 0

Die 1

Die 2

Die 3

Systolic array
on U250

…

…

…

… … …

DDR-0

DDR-1

Reason 2:
● HLS has limited consideration of those

physical barriers

● Placer often needs to pack things together to
reduce die crossing

○ Increase local congestion instead

● Sub-optimal choice of crossing wires by
the placer / router

13

Default Floorplan-Guided

Die 0

Die 1

Die 2

Die 3

Default Floorplan-Guided
Systolic array

on U250
Stencil accelerator

on U280

HBM-0 HBM-1

…

…

…

… … …

DDR-0

DDR-1

Opportunities and Challenges
● HLS has the freedom to alter the scheduling solution

○ Potentially add more pipelining

● But where and how many?

● Will performance (cycle count) be affected?

● Scalability of the method?

14

void top() {
temp = foo(...);
bar(temp, ...);

}

foo bar

foo bar

foo barwhich?

Previous Attempts
● Existing efforts focus on fine-grained delay model calibration

○ [Zheng-FPGA’12] Iteratively place & route to calibrate delay information for HLS

○ [Cong-2004] Placement-driven scheduling and binding

15

Previous Attempts
● Existing efforts focus on fine-grained delay model calibration

○ [Zheng-FPGA’12] Iteratively place & route to calibrate delay information for HLS

○ [Cong-2004] Placement-driven scheduling and binding

● Not scalable, limited to tiny designs (only ~1000s of LUTs)

○ Our benchmarks can be 100X larger and many take days to implement

16

Previous Attempts
● Existing efforts focus on fine-grained delay model calibration

○ [Zheng-FPGA’12] Iteratively place & route to calibrate delay information for HLS

○ [Cong-2004] Placement-driven scheduling and binding

● Not scalable, limited to tiny designs (only ~1000s of LUTs)

○ Our benchmarks can be 100X larger and many take days to implement

● Placer and router may not behave as expected

17

Core Idea
● Floorplan the design during HLS compilation

○ In a coarse granularity

● Add additional pipelining based on floorplan results

○ Guarantee no loss of performance

18

HLS Coarse-grain
Floorplanning Detail Placement

Conventional Placement

Floorplan-Guided HLS

Original
Approach

Proposed
Approach

Core Idea
● Floorplan the design during HLS compilation

○ In a coarse granularity

● Add additional pipelining based on floorplan results

○ Guarantee no loss of performance

19

HLS Coarse-grain
Floorplanning Detail Placement

Conventional Placement

Floorplan-Guided HLS

Original
Approach

Proposed
Approach

RTL

Core Idea
● Floorplan the design during HLS compilation

○ In a coarse granularity

● Add additional pipelining based on floorplan results

○ Guarantee no loss of performance

20

HLS Coarse-grain
Floorplanning Detail Placement

Conventional Placement

Floorplan-Guided HLS

Original
Approach

Proposed
Approach

Core Idea
● Floorplan the design during HLS compilation

○ In a coarse granularity

● Add additional pipelining based on floorplan results

○ Guarantee no loss of performance

21

HLS Coarse-grain
Floorplanning Detail Placement

Conventional Placement

Floorplan-Guided HLS

Original
Approach

Proposed
Approach Optimized RTL

Floorplan Constraint

Framework Overview

22

HLS Scheduling & Binding

Coarse-Grained Floorplanning

Floorplan-Aware Pipelining

RTL
Generation

Source Code

Synthesis, Placement, Routing

Constraint
Generation

Optimized
RTL

Floorplanning
Constraints

AutoBridge

A

B

A

The initial cell
representing

the FPGA device

The initial cell
is divided into
two child cells.

Eventually form a
2x4 grid of cells

Each cell is divided;
r0 divided into r00 ,
r01; r1 into r10 , r11

Initial State Iteration 1 Iteration 2 Iteration 3
r0

r1

r00

r01

r10

r11

row

col0 1

0

1

2

3

B

Integrate Top-Down Physical Planning with HLS

Pipelining with Min. Area and Lossless Throughput

Framework Overview

23

HLS Scheduling & Binding

Coarse-Grained Floorplanning

Floorplan-Aware Pipelining

RTL
Generation

Source Code

Synthesis, Placement, Routing

Constraint
Generation

Optimized
RTL

Floorplanning
Constraints

AutoBridge

Coarse-Grained Floorplanning

24

● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot

Coarse-Grained Floorplanning

25

● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
● Limit the resource utilization in each slot

limit resource usage (e.g., 70%)

Coarse-Grained Floorplanning

26

● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
● Limit the resource utilization in each slot
● Minimize the count of crossing-boundary wires

Coarse-Grained Floorplanning

27

● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
● Limit the resource utilization in each slot
● Minimize the count of crossing-boundary wires
● It is OK to have ultra-long connections

○ Will be pipelined later

Coarse-Grained Floorplanning

28

The initial cell
representing

the FPGA device

The initial cell
is divided into
two child cells.

Eventually form a
2x4 grid of cells

Each cell is divided;
r0 divided into r00 ,
r01; r1 into r10 , r11

Initial State Iteration 1 Iteration 2 Iteration 3
r0

r1

r00

r01

r10

r11

row

col0 1

0

1

2

3

● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
● Use ILP to iteratively partition the design

variables == # HLS functions
constraints == # connections
items in goal == # connections
Usual runtime < 10s

Coarse-Grained Floorplanning

29

The initial cell
representing

the FPGA device

The initial cell
is divided into
two child cells.

Eventually form a
2x4 grid of cells

Each cell is divided;
r0 divided into r00 ,
r01; r1 into r10 , r11

Initial State Iteration 1 Iteration 2 Iteration 3
r0

r1

r00

r01

r10

r11

row

col0 1

0

1

2

3

● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
● Use ILP to iteratively partition the design

variables == # HLS functions
constraints == # connections
items in goal == # connections
Usual runtime < 10s

Coarse-Grained Floorplanning

30

The initial cell
representing

the FPGA device

The initial cell
is divided into
two child cells.

Eventually form a
2x4 grid of cells

Each cell is divided;
r0 divided into r00 ,
r01; r1 into r10 , r11

Initial State Iteration 1 Iteration 2 Iteration 3
r0

r1

r00

r01

r10

r11

row

col0 1

0

1

2

3

● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
● Use ILP to iteratively partition the design

variables == # HLS functions
constraints == # connections
items in goal == # connections
Usual runtime < 10s

Coarse-Grained Floorplanning

31

The initial cell
representing

the FPGA device

The initial cell
is divided into
two child cells.

Eventually form a
2x4 grid of cells

Each cell is divided;
r0 divided into r00 ,
r01; r1 into r10 , r11

Initial State Iteration 1 Iteration 2 Iteration 3
r0

r1

r00

r01

r10

r11

row

col0 1

0

1

2

3

● Divide the FPGA into a grid of slots
● Assign each HLS function to one slot
● Use ILP to iteratively partition the design
● Pipeline the cross-slot connections

Framework Overview

32

HLS Scheduling & Binding

Coarse-Grained Floorplanning

Floorplan-Aware Pipelining

RTL
Generation

Source Code

Synthesis, Placement, Routing

Constraint
Generation

Target FPGA

Optimized
RTL

Floorplanning
Constraints

AutoBridge

Pipeline Data Transfer Logic

33

almost_full

wr_enable

wr_data

full

wr_en

data

empty

read

data

Producer ConsumerFIFO

Die
boundaries,

large IPs, etc.

● We focus on flow-control interfaces (e.g., FIFO, AXI)
● Assume a dataflow programming model
● Can be extended to non-flow-control interface

○ Refer to our paper for details

Address the Performance Concern
● Focus on when modules communicate through FIFOs

○ Hard to statically analyze the impact of additional latency
○ The additional latency may cause throughput decrease

34

Address the Performance Concern
● Focus on when modules communicate through FIFOs

○ Hard to statically analyze the impact of additional latency
○ The additional latency may cause throughput decrease

35

Note that each FIFO is being accessed by an arbitrary function
Þ Different from simplified model such as the Synchronous Data Flow (SDF)

Address the Performance Concern
● Focus on when modules communicate through FIFOs

○ Hard to statically analyze the impact of additional latency
○ The additional latency may cause throughput decrease

● Adapt cut-set pipelining
○ Add the same latency to all edges in a cut
○ Equivalent to balancing the latency of reconvergent paths

36

1

e12

e13

e14

e15

e16

2

3

4

5

6

7

Pipeline inter-slot connections

Address the Performance Concern
● Focus on when modules communicate through FIFOs

○ Hard to statically analyze the impact of additional latency
○ The additional latency may cause throughput decrease

● Adapt cut-set pipelining
○ Add the same latency to all edges in a cut
○ Equivalent to balancing the latency of reconvergent paths

37

1

e12

e13

e14

e15

e16

2

3

4

5

6

7

Pipeline inter-slot connections
Balance the latency of all paths

Address the Performance Concern
● Focus on when modules communicate through FIFOs

○ Hard to statically analyze the impact of additional latency
○ The additional latency may cause throughput decrease

● Adapt cut-set pipelining
○ Add the same latency to all edges in a cut
○ Equivalent to balancing the latency of reconvergent paths

38

1

e12

e13

e14

e15

e16

2

3

4

5

6

7

How to minimize
area overhead?

2

3

4

5

6

71

w=2

Address the Performance Concern
● Focus on when modules communicate through FIFOs

○ Hard to statically analyze the impact of additional latency
○ The additional latency may cause throughput decrease

● Adapt cut-set pipelining
○ Add the same latency to all edges in a cut
○ Equivalent to balancing the latency of reconvergent paths

40

1

e12

e13

e14

e15

e16

2

3

4

5

6

7

2

3

4

5

6

71

w=2

How to minimize
area overhead?

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.

41

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

42

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge

43

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge
● Minimize the area overhead

44

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge
● Minimize the area overhead

45

S1 ≥ S2 + 1
S2 ≥ S4
S1 ≥ S3
S3 ≥ S4
S0 ≥ S1

2

1

3

4

w=2w=1

0

1 unit of
latency

w=1w=1
w=1

min. (S2 - S4) + (S1 - S2) + (S1 - S3)
+ 2 (S3 - S4) + (S0 - S1)

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge
● Minimize the area overhead

46

S1 ≥ S2 + 1
2

1

3

4

w=2w=1

0

1 unit of
latency

w=1w=1
w=1

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge
● Minimize the area overhead

47

S1 ≥ S2 + 1
S2 ≥ S4

2

1

3

4

w=2w=1

0

1 unit of
latency

w=1w=1
w=1

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge
● Minimize the area overhead

48

S1 ≥ S2 + 1
S2 ≥ S4
S1 ≥ S3

2

1

3

4

w=2w=1

0

1 unit of
latency

w=1w=1
w=1

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge
● Minimize the area overhead

49

S1 ≥ S2 + 1
S2 ≥ S4
S1 ≥ S3
S3 ≥ S4

2

1

3

4

w=2w=1

0

1 unit of
latency

w=1w=1
w=1

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge
● Minimize the area overhead

50

S1 ≥ S2 + 1
S2 ≥ S4
S1 ≥ S3
S3 ≥ S4
S0 ≥ S1

2

1

3

4

w=2w=1

0

1 unit of
latency

w=1w=1
w=1

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge
● Minimize the area overhead

51

S1 ≥ S2 + 1
S2 ≥ S4
S1 ≥ S3
S3 ≥ S4
S0 ≥ S1

2

1

3

4

w=2w=1

0

1 unit of
latency

w=1w=1
w=1

min. (S2 - S4) + (S1 - S2) + (S1 - S3)
+ 2 (S3 - S4) + (S0 - S1)

Latency Balancing with Minimal Area Overhead
Problem: balance the latency of every pair of reconvergent paths with min area.
● Assign variable Sv for each vertex v

○ Analogous to the “arrival time” in static timing analysis
○ (Sx – Sy) represents the latency of all path between vertex x and y

● For an edge euv , (Su – Sv) is no less than the additional latency needed for this edge
● Minimize the area overhead

52

S1 ≥ S2 + 1
S2 ≥ S4
S1 ≥ S3
S3 ≥ S4
S0 ≥ S1

2

1

3

4

w=2w=1

0

1 unit of
latency

w=1w=1
w=1

min. (S2 - S4) + (S1 - S2) + (S1 - S3)
+ 2 (S3 - S4) + (S0 - S1)

System of Difference Constraints
(Polynomial Time Solvable)

Benchmarks

53

… …

…

…

…

… … …

… … … …

Stencil Computation (Chi-ICCAD’18) Genome Sequencing (Guo-FCCM’19)

CNN (Wang-ICCAD’18) PageRank (Chi-Arcxiv’20)

Bucket Sort (Qiao-ISCA’20)

…

… … …… …

DDR-0 DDR-1 DDR-1DDR-0

HBM-0

HBM-1

HBM-7

HBM-8

HBM-9

HBM-15

DDR-0

DDR-1

DDR-2
HBM-0

HBM-1

HBM-7

Gaussian Elimination (Wang-FPGA’21)

DDR-0

DDR-1
DDR-2

● A total of 43 design configurations
● 16 of them originally failed in routing
● From 147 MHz to 297 MHz on average (~2X)
● Negligible difference in resource utilization or cycle count.

Case Study 1
● Stencil Computation, 16 configurations

54

…

HBM-0 HBM-1

Default Floorplan-Guided
Comparison of the 4-PE Design on U280

● Difference in Resource Utilization
○ LUT: -0.26%
○ FF: +0.78%
○ BRAM: +4.68%
○ DSP: +0.00%

AutoBridgeDefault

Default: avg. 86 MHz Default: avg. 69 MHz

Opt: avg 266 MHz (3.1X) Opt: avg. 273 MHz (3.9X)

Case Study 2
● Gaussian Elimination, 8 configurations

55

DDR-0

DDR-1

DDR-2

● Difference in Resource Utilization
○ LUT: -0.14%
○ FF: -0.04%
○ BRAM: -0.03%
○ DSP: +0.00%

Comparison of the 24x24 Design on U250

AutoBridgeDefault

Default: avg. 245 MHz Default: avg. 223 MHz

Opt: avg. 334 MHz (1.4X) Opt: avg. 335 MHz (1.5X)

Case Study 3
● CNN Accelerator, 14 configurations

56

…

…

…

… … …

DDR-0

DDR-1

DDR-2

● Difference in Resource Utilization
○ LUT: -0.08%
○ FF: -0.16%
○ BRAM: -0.02%
○ DSP: +0.00%

Comparison of the 16x13 Design on U250

AutoBridgeDefault

Default: avg. 140 MHz Default: avg. 214 MHz

Opt: avg. 316 MHz (2.3X) Opt: avg. 328 MHz (1.5X)

Impact of Pipelining and Floorplanning
● Is it possible that only one of them is the key factor?

○ Baseline: (-) floorplanning, 8 slots (-) pipelining

○ AutoBridge: (+) floorplanning, 8 slots (-) pipelining

○ Case 1: (-) floorplanning (+) pipelining

○ Case 2: (+) floorplanning, 4 slots (neglect the DDRs) (-) pipelining

57Control Experiments Based on Systolic Arrays on U250

Projects Using AutoBridge
● AutoSA: Polyhedral-Based Systolic Array Auto-Compilation

○ https://github.com/UCLA-VAST/AutoSA

● TAPA: Extending High-Level Synthesis for Task-Parallel Programs

○ https://github.com/Blaok/tapa

● Acceleration of Bayesian Network Inference (in submission)

● Acceleration of Single-Source-Shortest-Path algorithm (in submission)

58

https://github.com/Licheng-Guo/AutoBridge

https://github.com/UCLA-VAST/AutoSA
https://github.com/Blaok/tapa

Projects Using AutoBridge
● AutoSA: Polyhedral-Based Systolic Array Auto-Compilation

○ https://github.com/UCLA-VAST/AutoSA

● TAPA: Extending High-Level Synthesis for Task-Parallel Programs

○ https://github.com/Blaok/tapa

● Acceleration of Bayesian Network Inference (in submission)

● Acceleration of Single-Source-Shortest-Path algorithm (in submission)

59

https://github.com/Licheng-Guo/AutoBridge

https://github.com/UCLA-VAST/AutoSA
https://github.com/Blaok/tapa

Thank You!

60

