
Rapid Cycle-Accurate Simulator
for High-Level Synthesis

(FLASH)

Yuze Chi, Young-kyu Choi, Jason Cong, and Jie Wang

University of California, Los Angeles

Supported by Intel and NSF Joint Research Center on
Computer Assisted Programming for Heterogeneous Architectures (CAPA)

Motivation

• RTL co-simulation for HLS

• SW simulation for HLS

2

Too slow...
(ex matmul: 192s)

100X to 1000X faster

than RTL co-sim
(ex matmul: 0.05s) - But can it measure

the execution time?

- Is it producing the

correct result?

https://www.goodfreephotos.com/cache/vector-images/confused-idea-lightbulb.png
http://clipart-library.com/clipart/133840.htm
https://pixabay.com/en/light-bulb-idea-enlightenment-plan-1926533/

Easy to understand

Difficult to

understand

• HLS simulation of molecular dynamics

– Reason

3
Christophe Rowley, https://en.wikibooks.org/wiki/Molecular_Simulation/Radial_Distribution_Functions

Dist PE1 Dist PE2 Dist PE3 Dist PE4

1st round: (bubble) 2 (bubble) (bubble)

2nd round: 5 (bubble) (bubble) 8

3rd round: (bubble) 10 11 (bubble)

5
6

8
4

(II=4)

9 2

3

12

1

11 10

Force PE (II=1)

(Round-robin

non-blocking

read)

RTL sim output: 2

SW sim output: 5 2 11 8 10

7

Simulated in

instantiation order

→ Missing bubbles

Does not

match!

#pragma HLS dataflow
Dist_PE1();
Dist_PE2();
Dist_PE3();
Dist_PE4();
Force_PE();

< HLS C code>

5 8 10 11

• Conventional simulation flows & proposed approach

• Overall simulation framework of FLASH*

4

Fast, but
1. Output may
not be accurate
2. No perf
estimation

Accurate, but
too slow

HLS C code Compilation Binding

Allocation

Scheduling

Generation RTL code

Library

SW
simulator

Proposed
simulator
(FLASH)

RTL
simulator

scheduling info

stmt,loop,
func, ...

<HLS design steps>

Vivado HLS
C code

Input:

Prepro-
cessing

HLS
Synthesis

Sim File
Generation
(w/ ROSE)

HLS C sim Analysis

Output:

*FLASH: Fast, paralleL, Accurate Simulator for HLS

Scheduling info

New sim
file

• Automated simulation code
generation

– Cycle-accurate simulation

– Task-level parallelism

– Pipelined parallelism

– FIFO simulation & stalls (deadlock)

– Loop/Func simulation

5

while (i < N){
#pragma HLS pipeline

if(f1.empty() == false){
int temp = f1.read();
f2.write(temp*711);
i++;

}

static bool p1_en_st3, ...= false;
static int temp_st3, ... temp_st6;
...
if(M2_state == 1){

...
M2_state = 2;

}
else if(M2_state == 2){

if(p1_en_st6&&f2_wptr==f2_wnum){
return;

}
...
if(p1_en_st6 == true){

p1_en_st6 = false;
f2_warr[f2_wptr++] = temp_st6;

}
...
if(p1_en_st3 == true){

p1_en_st3 = false;
p1_en_st4 = true;
temp_st4 = temp_st3;

}
...
if(i_st2 < N){

if(f1_rnum != 0){
p1_en_st3 = true;
temp_st3=f1_rarr[f1_rptr++];
i_st2++; ...

} } }

Single FSM state

simulated per sim

func call

FIFO write

FIFO read

FIFO empty

Simulates

pipelined

parallelism

Pipeline stall condition

<Transformed C code for simulation>

<Original HLS C code>

(Details at poster)

FLASH
Sim File

Generator
(w/ ROSE)

<Timing information from
synthesis report>

• Simulation time comparison

The proposed simulator (FLASH):

– runs at a comparable speed with SW simulation (= 1.00X / 1.13X)

– is faster than RTL simulation by 3 orders of magnitude (=1570X/1.13X)

– in some cases, is faster than SW simulation (reason discussed in posters)

– has more overhead with deep pipelines or with frequent FIFO stalls

6

Deep (55) pipeline

Frequent FIFO stall
(FIFO depth=1)

• Key take-away

– HLS SW simulation based on the scheduling information
• Can help solve the correctness issue and rapidly provide

accurate performance estimation

– This could substantially decrease the validation time of
HLS tool customers

• We hope the presented result could motivate vendors to adopt
similar approach in their HLS tools

• Thank you!
7

Cycle-accurate
performance
estimation

Correct
output data

Detect
deadlock
situation

https://pixabay.com/en/dart-board-arrow-bull-s-eye-25780/
https://pixabay.com/en/correct-mark-green-continue-right-2214020/
http://www.bhanage.com/2017/02/linux-difference-deadlocks-livelocks.html

