

Rapid Cycle-Accurate Simulator for High-Level Synthesis (FLASH)

Yuze Chi, <u>Young-kyu Choi</u>, Jason Cong, and Jie Wang

University of California, Los Angeles

Supported by Intel and NSF Joint Research Center on Computer Assisted Programming for Heterogeneous Architectures (CAPA)

Motivation

• RTL co-simulation for HLS

Too **slow**... (ex matmul: 192s)

Difficult to understand

• SW simulation for HLS

https://www.goodfreephotos.com/cache/vector-images/confused-idea-lightbulb.png http://clipart-library.com/clipart/133840.htm https://pixabay.com/en/light-bulb-idea-enlightenment-plan-1926533/

100X to 1000X faster than RTL co-sim (ex matmul: 0.05s)

Easy to understand

But can it measure the execution time?
Is it producing the *correct* result? • HLS simulation of molecular dynamics

• Conventional simulation flows & proposed approach

• Overall simulation framework of FLASH*

<Transformed C code for simulation> 5

• Simulation time comparison

Benchmark	V C Sim	V RTL Sim	I OCL Sim	FLASH	_
Toy_mpath	0.602s	492s	4.60s	0.570s	_
	(1.00X)	(817X)	(7.64X)	(0.947X)	
Stencil	1.46s	113s	2.63s	1.25s	
	(1.00X)	(77.4X)	(1.80X)	(0.856X)	
MD_sim	0.0547s	100s	0.0921s	0.0677s	
	(1.00X)	(1,830X)	(1.68X)	(1.24X)	Deep (55) pipeline
Mat_mul	0.0539s	192s	0.201s	0.0810s	Frequent FIFO stall
	(1.00X)	(3,560X)	(3.73X)	(1.50X)	(FIFO depth=1)
AVG	(1.00X)	(1,570X)	(3.71X)	(1.13X)	_ (

The proposed simulator (FLASH):

- runs at a comparable speed with SW simulation (= 1.00X / 1.13X)
- is faster than RTL simulation by 3 orders of magnitude (=1570X/1.13X)
- in some cases, is faster than SW simulation (reason discussed in posters)
- has more overhead with deep pipelines or with frequent FIFO stalls

- Key take-away
 - HLS SW simulation based on the scheduling information
 - Can help solve the correctness issue and rapidly provide accurate performance estimation
 - This could substantially decrease the validation time of HLS tool customers

- We hope the presented result could motivate vendors to adopt similar approach in their HLS tools
- Thank you!