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Large-scale graphs are widely used!
• Large-scale graphs are widely used in different domains
• Involved with billions of edges and Gbytes ~ Tbytes storage

– WeChat:	0.65	billions	active	users	 (2015)
– Facebook:	1.55	billions	active	users	(2015Q3)
– Twitter2010:	1.5	billions	edges,	13GB
– Yahoo-web:	6.6	billions	edges,	51GB

• Different graph algorithms
– Generality	requirement	
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G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The yahoo! music dataset and kdd-cup'11
H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news media?



Different graph algorithms
• PageRank

– The	rank	of	a	page	depends	on	
ranks	of	pages	which	link to	it

• User Recommendation
– Matrix	à Graph

• Deep Learning
– Network	à Graph
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Page, Lawrence, et al.The PageRank citation ranking: Bringing order to the web. Stanford InfoLab, 1999.
Low, Yucheng, et al. "Distributed GraphLab: a framework for machine learning and data mining in the cloud." Proceedings of the VLDB Endowment 5.8 (2012): 716-727.
Qiu, Jiantao, et al. "Going deeper with embedded fpga platform for convolutional neural network." Proceedings of the 2016 ACM/SIGDA International Symposium on 
Field-Programmable Gate Arrays. ACM, 2016.



Generality requirement
• High-level abstraction model

– Read-based/Queue-based	 Model	for	BFS/APSP	[Stanford,	PACT’10]	×
– Vertex-Centric	Model	(VCM)	[Google,	SIGMOD’10]	√

• In VCM
– A	vertex	updated	à Neighbor	vertices	 to	be	updated
– Different	graph	algorithms	à Different	 updating	functions
– Traverse	 edges	in	VCM	for	each	step
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Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." Proceedings of the 2010 ACM SIGMOD International Conference on Management of 
data. ACM, 2010.
Hong, Sungpack, Tayo Oguntebi, and Kunle Olukotun. "Efficient parallel graph exploration on multi-core CPU and GPU." Parallel Architectures and Compilation 
Techniques (PACT), 2011 International Conference on. IEEE, 2011.
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Why FPGA？
• High potential parallelism
• Relatively simple operations

– e.g.	Breadth-First	Search:	comparison

• Bandwidth is essential
– Suffer	from	random	access
– Suitable	memory

• Disk,	DRAM,	cache?	×
• SRAM？√

CPUs GPUs FPGAs
Parallelism 10~100	threads	 >1000	threads >1000	PEs

Architecture Complex Simple	 Bit-level	operation

Suitable for	graphs?
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Src: 1,2,3 Dst: 4,5,6
Dst: 5,6,
4,5,5,6

Src: 2,1,
2,3,1,3

FPGA：Xilinx	xvcu190 GPU：NVIDIA Tesla	P100

Block	RAM Shared	Memory

16.61MB 2.7MB



Why Multi-FPGA?
• Using more FPGAs means…

– Larger	on-chip	storage
– Higher	degree	of	parallelism
– Higher	bandwidth	of	data	access

• Scalability
– Size	of	BRAMs	on	a	chip	~	MB
– Size	of	large-scale	graphs	~	GB	to	TB
– Using	multi-FPGA based	on	scalable	 interconnection
schemes	can	be	a	solution	to	large-scale	graph	processing	
problems	in	future

• Full	connection?	×
• Mesh/Torus	√
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103 ~ 106 gap!
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GraphGen [CMU, FCCM’14]
• First vertex-centric system on FPGA 

– Storing	graphs	on	off-chip	DRAMs	using	CoRAMs
– ML	support

• However…
– Do	not	support	 large-scale	graphs

11
Nurvitadhi, Eriko, et al. "GraphGen: An FPGA framework for vertex-centric graph computation." Field-Programmable 
Custom Computing Machines (FCCM), 2014 IEEE 22nd Annual International Symposium on. IEEE, 2014.



GraphOps [Stanford, FPGA’16]
• Graph processing library on FPGA 

– APIs	for	different	 operations	in	graphs

• However…
– Preprocessing	overhead
– Scalability	 to	multi-FPGAs

12Oguntebi, Tayo, and Kunle Olukotun. "Graphops: A dataflow library for graph analytics acceleration." Proceedings of the 2016 ACM/SIGDA International 
Symposium on Field-Programmable Gate Arrays. ACM, 2016.



FPGP [ours, FPGA’16]
• Multi-FPGA support
• One FPGA chip – One graph partition 

– Independent	edge	storage
– Optimized	data	allocation

• However
– All	FPGAs	linked	to	one	SVM
– Lack	of	scalability

13
Dai, Guohao, et al. "FPGP: Graph Processing Framework on FPGA A Case Study of Breadth-First Search." Proceedings of the 2016 
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, 2016.



Zhou’s work [USC, FCCM’16]
• Using edges to store value of vertices 

– One	edge	– One	message	(src to	dst)
– Edges	stored	in	DRAMs

• Improve off-chip DRAM hit ratio

• However…
– The	largest	graph	 in	its	experiment:	~65M	edges
– Cannot	scale	to	multi-FPGAs

14
Zhou, Shijie, Charalampos Chelmis, and Viktor K. Prasanna. "High-throughput and Energy-efficient Graph Processing on FPGA." Field-Programmable Custom 
Computing Machines (FCCM), 2016 IEEE 24th Annual International Symposium on. IEEE, 2016.



Other systems
• Brahim’s work [ICT, FPT’11, FPL’12, ASAP’12]

– Using	multi-FPGA	system
– Designed	for	dedicated	algorithms

• BFS/ASAP
• Graphlet counting

• GraVF [HKU, FPL’16]
– Scatter	value	from	src to	dst
– Lack	of	optimization	 for	data	access

• GraphSoC [NTU, ASAP’15]
– Using	soft	cores	on	FPGAs
– Lack	of	optimization	 for	data	access
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Betkaoui, Brahim, et al. "A framework for FPGA acceleration of large graph problems: Graphletcounting case study." Field-
Programmable Technology (FPT), 2011 International Conference on. IEEE, 2011.
Betkaoui, Brahim, et al. "A reconfigurable computing approach for efficient and scalable parallel graph exploration." Application-
Specific Systems, Architectures and Processors (ASAP), 2012 IEEE 23rd International Conference on. IEEE, 2012.
Betkaoui, Brahim, et al. "Parallel FPGA-based all pairs shortest paths for sparse networks: A human brain connectome case 
study." Field Programmable Logic and Applications (FPL), 2012 22nd International Conference on. IEEE, 2012.
Engelhardt, Nina, and Hayden Kwok-Hay So. "GraVF: A vertex-centric distributed graph processing framework on FPGAs." Field 
Programmable Logic and Applications (FPL), 2016 26th International Conference on. IEEE, 2016.
Kapre, Nachiket. "Custom FPGA-based soft-processors for sparse graph acceleration." Application-specific Systems, Architectures 
and Processors (ASAP), 2015 IEEE 26th International Conference on. IEEE, 2015.



Year &	
Conference

Support different	
algorithms

Size of	graphs
（#edges）

Scalability	to	
Multi-FPGAs

GraphGen FCCM’14 Support 221	k

GraphOps FPGA’16 Support 30	m

FPGP FPGA’16 Support 1.4	b

Zhou’s	work FCCM’16 Support 65.8	m

Brahim’s work 11~12 Not support 80	m

GraVF FPL’16 Support 512	k

GraphSoc ASAP’15 Support 12	k

Related work - Conclusion

• A general purposed large-scale graph processing system using 
multi-FPGAs is required
– Generality:	Support	different	 algorithms
– Velocity:	Process	 large-scale	graphs	(>1	billion	edges)	 fast
– Scalability:		Multi-FPGAs	with	scalable	connections
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• Overall architecture

• Multi processing units: Multi-FPGA + Multi-PE
– One FPGA	board	=	one	FPGA	chip	+	exclusive	DRAM
– One	FPGA	chip	include	several	 PEs	to	perform	graph	updating	

• We need to avoid conflict among units
– Well-designed	data	allocation	 is	required

Overall Architecture
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Data Allocation
• Avoid data conflict among boards 

– Interval-block Model	(traverse	edges	à process	all	blocks)
– Vertices divided	in	to	P intervals
– Edges divided	into	P2 blocks
– One	FPGA	board	updates

• 1 interval
• P blocks	

• Only intervals are transferred among boards
• Further partitioning

– Q sub-intervals
– Q2 sub-blocks
– One	PE	on	a	chip

• One	src sub-interval
• One	dst sub-interval
• One	sub-block 19



Processing Flow
• K PEs on a chip

– Processing	K sub-blocks	(One	PE	processes	one	sub-
block)

– P	*	Q2 sub-blocks	need	to	be	processed

• Key points to accelerate processing
– Minimize	α (Times	of	loading	sub-intervals)

• Minimize	substitutions	of	sub-intervals	

– Maximize	β (Number	of	PEs	processing	simultaneously)
• Avoid	idle	PEs	during	processing
• Balance	workloads	of	different	PEs	

20

𝑻 = 𝜶𝑻𝒍𝒐𝒂𝒅𝒊𝒏𝒈	𝒂	𝒔𝒖𝒃/𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍 + 𝑻𝒍𝒐𝒂𝒅𝒊𝒏𝒈	𝒂𝒍𝒍	𝒔𝒖𝒃/𝒃𝒍𝒐𝒄𝒌𝒔 +
𝑷𝑸𝟐𝑻𝒑𝒓𝒐𝒄𝒆𝒔𝒊𝒏𝒈	𝒂	𝒔𝒖𝒃/𝒃𝒍𝒐𝒄𝒌

𝜷
loading vertices processingloading edges



Opt. I: Minimized Substitutions
• When processing another sub-block

– Substitute	at	least	one	sub-interval
– Less	substitutions	à less	data	transferred

• Two different strategies

• Minimize data transferred using DFR
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Opt. II: Avoid Idle PEs
• Rearrange edges can avoid idle PEs

– Assuming	2	edges	can	be	loaded	from	the	DRAM	per	cycle

• K PEs on a chip
– Edges	in	K consecutive	sub-blocks	are	rearranged
– Avoid	idle	PEs	using	sub-block	 rearrangement	
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Opt. III: Balanced Workloads
• K PEs need to be synchronized

– Total	execution	time	depends	on	
the	slowest	PE

– Execution	time	of	a	PE	∝ #edges

• Need to balance #edges in 
different sub-blocks
– Balance	workloads	 of	different	PEs	

using	hash	function

• Hash function

23

Interval	1 Interval	2 Interval	3

division v1,	v2,	v3 v4,	v5,	v6 v7,	v8,	v9

hash v1,	v4,	v7 v2,	v5,	v8 v3,	v6,	v9
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Experimental Setup
• Platform

– Xilinx	Virtex UltraScale VCU110	evaluation	 platform
– Xilinx	Vivado 2016.2	
– Post-place-and-route	 simulations
– DRAM	peak	bandwidth:	19.2GB/s

• Datasets
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|V| |E|

com-youtube (YT)	 1.16	million 2.99	million

wiki-talk	(WK) 2.39	million 5.02	million

live-journal	(LJ) 4.85	million 69.0	million

twitter-2010	(TW)	 41.7	million 1.47	billion

yahoo-web	(YH)	 1.41	billion 6.64	billion

Stanford large network dataset collection. http://snap.stanford.edu/data/index.html#web.
Yahoo! altavisata web page hyperlink connectivity graph, circa 2002. http://webscope.sandbox.yahoo.com/.
Kwak, Haewoon, et al. "What is Twitter, a social network or a news media?." Proceedings of the 19th international conference on World wide web. ACM, 2010.



Resource Utilization
• On-chip BRAM resources are key to large-scale 

graph processing on FPGAs!
– >	80%	BRAM	resources	are	used
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BFS PR WCC
#	PE	per	chip 96 24 24

LUTs 31.2% 33.4% 35.9%
Registers 17.3% 20.6% 19.7%
BRAMs 89.4% 81.0% 81.0%

Maximal clock	frequency 205MHz 187MHz 173MHz
Simulation clock	frequency 200MHz 150MHz 150MHz



Performance
Algorithm Graph Execution	 Time(s) Throughput(MTEPS)

BFS
YT 0.010 897

WK 0.027 929

LJ 0.452 1069

TW	(4	chips) 15.12 1458	(364/chip)

PR
YT 0.030 997

WK 0.052 965

LJ 0.578 1193

TW	(4	chips) 7.921 1856 (464/chip)

WCC
YT 0.016 934

WK 0.021 956

LJ 0.307 1124

TW	(4	chips) 24.68 1727	(432/board)

27
Throughput: ~ 1000 Millions Traversed
Edges Per Second



Performance
• Compared with state-of-the-art systems

– 4.54x	~	8.07x	speedup
– 1.41x	~	2.65x	throughput	 improvement

28

Alg. Graph Metric
ForeGraph Comparison	system

Improv
ement#	FPGAs Perfor

mance System Platform Perfor
mance

BFS TW time	(s) 4 15.12 TurboGraph
[SIGKDD13] CPU 76.134 5.04x

BFS TW time	(s) 4 15.12 FPGP
[FPGA16] 1	FPGA 121.99 8.07x

PR TW time	(s) 4 7.921 PowerGraph
[OSDI12] 512	CPUs 36 4.54x

BFS WK MTEPS 1 1069 Zhou’s	work
[FCCM16] 1	FPGA 657 1.41x

BFS - MTEPS 4 1458 CyGraph
[IPDPSW16] 4	FPGAs 550 2.65x



Scalability
• Different interconnection schemes

– 12.25	Gb/s	bandwidth and	400ns	latency

– ① All	FPGAs	being	connected	 to	one	bus
• One	bus	line	leads	to	heavy	traffic

– ② Similar	performance,	torus/mesh	(ForeGraph)	and	full
• ForeGraph scales	well	to	larger	graphs	by	using	more	FPGA	chips

– ③ Full	connection	scheme	cannot	achieve	linear	speedup
• Due	to	characteristics	of	natural	graphs	(e.g.	α-law) 29

①

②
③
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Conclusion & Future Work
• Conclusion

– ForeGraph can	
• Generality: Support	different	algorithms
• Velocity: Process	graphs	with	billions	of	edges	with	
throughput	at	1000	MTEPS

• Scalability: Scale	to	larger	graphs	by	using	more	FPGAs

– Larger	BRAMs	à better	performance
• Future work

– Support	for	more	applications
– Open	source	or	compatibility	of	big	data	
framework
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