
ForeGraph: Exploring Large-scale Graph Processing on
Multi-FPGA Architecture

Guohao Dai1, Tianhao Huang1, Yuze Chi2, Ningyi Xu3, Yu Wang1, Huazhong Yang1

1Department of Electronic Engineering, TNLIST, Tsinghua University, Beijing, China
2Computer Science Department, University of California, Los Angeles, USA

3Hardware Computing Group, Microsoft Research Asia, Beijing, China
1dgh14@mails.tsinghua.edu.cn, 1yu-wang@tsinghua.edu.cn, 3xu.ningyi@microsoft.com

ABSTRACT
The performance of large-scale graph processing suffers

from challenges including poor locality, lack of scalability,
random access pattern, and heavy data conflicts. Some char-
acteristics of FPGA make it a promising solution to acceler-
ate various applications. For example, on-chip block RAMs
can provide high throughput for random data access. How-
ever, large-scale processing on a single FPGA chip is con-
strained by limited on-chip memory resources and off-chip
bandwidth. Using a multi-FPGA architecture may alleviate
these problems to some extent, while the data partitioning
and communication schemes should be considered to ensure
the locality and reduce data conflicts.

In this paper, we propose ForeGraph, a large-scale graph
processing framework based on the multi-FPGA architec-
ture. In ForeGraph, each FPGA board only stores a parti-
tion of the entire graph in off-chip memory. Communication
over partitions is reduced. Vertices and edges are sequen-
tially loaded onto the FPGA chip and processed. Under our
scheduling scheme, each FPGA chip performs graph pro-
cessing in parallel without conflicts. We also analyze the
impact of system parameters on the performance of Fore-
Graph. Our experimental results on Xilinx Virtex Ultra-
Scale XCVU190 chip show ForeGraph outperforms state-of-
the-art FPGA-based large-scale graph processing systems by
4.54x when executing PageRank on the Twitter graph (1.4
billion edges). The average throughput is over 900 MTEPS
in our design and 2.03x larger than previous work.

Keywords
large-scale graph processing; multi-FPGA architecture

1. INTRODUCTION
With demand for data analysis continuing to grow, the

large-scale graph processing which discovers relationships
among data is gaining increasing attention in many domains
[1]. Previous work has provided large-scale graph processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA ’17, February 22-24, 2017, Monterey, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4354-1/17/02. . . $15.00

DOI: http://dx.doi.org/10.1145/3020078.3021739

systems, including CPU-based [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13], GPU-based [14, 15], FPGA-based [16, 17, 18, 19,
20, 21, 22, 23], and emerging systems [24].

As emphasized in this work, the key problem in large-scale
graph processing is to provide a high bandwidth of data ac-
cess [25, 26]. However, some characteristics of large-scale
graphs bring challenges to fully utilizing bandwidth. These
challenges include: (1) Poor locality. Graphs represent un-
structured relationships between entities, and thus a small
partition can have access to the whole graph. Poor locality
leads to frequent global data access, while only local data
access will have a large bandwidth in state-of-the-art com-
puting platforms. (2) Lack of scalability. Communication
over partitions causes heavy traffic in large-scale graph pro-
cessing. Thus, it is difficult to design a system which scales
to larger graphs. (3) Random data access pattern. The
data access pattern of two neighboring vertices can be quite
unlike. Such unstructured characteristic of graphs random-
izes graph data access pattern. (4) Heavy data conflicts.
Vertices from different partitions may read/write the same
vertex simultaneously, leading to heavy conflicts. Moreover,
unpredictable data access pattern brings great challenges to
avoid conflicts. These four challenges need to be carefully
considered so as to provide a high bandwidth and design a
high-performance large-scale graph processing system.

To tackle these challenges, many solutions have been de-
signed in previous work and most of them mainly focus on
fully utilizing the bandwidth. GraphChi [4] divides a large
graph into several intervals and shards as partitions of ver-
tices and edges. Based on the partitioning scheme, the lo-
cality is ensured by accessing each partition in turns. Some
previous work [10, 18, 4, 23] also sorts data to eliminate the
randomness and conflicts of graph data access. However, the
overhead of pre-processing on sorting data before execution
needs to be reckoned especially when the graph may dynam-
ically change during run-time. Compared with CPUs and
GPUs, the random access feature of on-chip BRAMs is pro-
vided to implement random data access with high through-
put on FPGA. However, the size of on-chip BRAMs of one
FPGA chip is much smaller than the typical size of a large
graph. Consequently, using the multi-FPGA architecture is
a promising way to provide larger on-chip BRAM resources.
However, most of FPGA-based systems are designed for one
FPGA board [23] or require a global-accessible memory [18],
with poor scalability for larger graphs.

To provide a high-performance large-scale graph process-
ing system based on the multi-FPGA architecture, we design
ForeGraph. We divide graphs into small partitions and as-

217

Table 1: Notations of a graph

Notation Meaning

G a graph G = (V , E)

V vertices in G, |V| = n

E edges in G, |E| = m

vi vertex i

ei.j edge from vi to vj
esrc source vertex of edge e

edst destination vertex of edge e

Ix interval x

Sy shard y

Bx→y block x.y linked from Ii to Ij
SIx,i the i-th sub-interval of Ix
SBx→y,i,j the (i, j) sub-block of Bx→y

P number of intervals

Q number of sub-intervals in an interval

K number of processing elements on a chip

sign each partition to an FPGA board to ensure the locality
of data access. Communication overhead among different
FPGA boards is minimized to make ForeGraph scalable to
large graphs. Vertices and edges are sequentially loaded onto
FPGA chips to avoid random data access. Each partition
is further divided into smaller ones and assigned to differ-
ent processing elements (PEs) on FPGA chips, so conflicts
are eliminated. Such multi-FPGA architecture can provide
sufficient on-chip BRAM resources and off-chip bandwidth,
which are essential to improve the performance of FPGA-
based large-scale graph processing systems. Specifically, this
paper makes the following contributions.
• Scalable multi-FPGA graph processing. The multi-

FPGA architecture provides large on-chip BRAM resources
with random access feature and sufficient off-chip band-
width of graph data access. Data are allocated to each
FPGA board rather than stored in a global-accessible
memory (e.g. Shared-Vertex Memory in [18]) (Section 3.2
and Section 3.3). Moreover, communication overhead among
boards is minimized (Section 3.4). These two technologies
make our system scale to larger graphs.

• Pre-processing with low overhead. Vertices and edges
are divided into partitions according to their indexes (Sec-
tion 3.5). Data are not required to be sorted within each
partition thus the overhead of pre-processing is reduced
(from O(m logm) to O(m), m denotes the number of
edges). Locality is ensured, and conflicts are removed un-
der our partitioning scheme.

• Fully utilizing off-chip bandwidth. We minimize data
transmission on one board to fully utilize off-chip band-
width. We adopt several optimization techniques in Sec-
tion 4. For example, we compress the vertex index and
use only 4 Bytes to represent an edge (2 Bytes for source
and destination vertex respectively), even though there
are millions of vertices in the graph.

• Extensive experiments. We have conducted compre-
hensive experiments to evaluate the performance in Sec-
tion 6. Experimental results on five graphs show that
ForeGraph can execute graph algorithms on graphs with
billions of edges. ForeGraph outperforms state-of-the-art
FPGA-based systems by 5.89x, and the average through-
put is 2.03x larger than previous work.
The remaining of this paper is organized as follows. Sec-

0

1

4

3

2

5
(a) Example graph

1

4

3

2

5
Gather Apply Scatter

(b) Three phases in GAS
model (v4 as example)

01

4

32

1

3 4

4

5

Vertex-centric Edge-centric

access sequence

01

32

14

42

43

54

(c) Access sequence of edges
in VC and EC model

S1 S2

01

14

32

42

43

54

B1 1 B1 2

B2 1 B2 2

0 1 2 3 4 5

2

1

0

5

4

3

I1 I2

Destination Vertex
Source Vertex

(d) Graph partitioning using
intervals and shards

Figure 1: Example graph and corresponding models.

tion 2 introduces the background information of large-scale
graph processing and correlative systems. The whole archi-
tecture of ForeGraph is shown in Section 3. Some optimiza-
tion methods to fully utilize off-chip bandwidth are shown
in Section 4. The performance of ForeGraph is analyzed
and presented in Section 5 and Section 6 from both theoret-
ical and experimental perspectives. We finally conclude this
paper in Section 7.

2. BACKGROUND AND RELATED WORK
In this section, the background information of graph pro-

cessing models is presented. Then, we will introduce previ-
ous FPGA-based large-scale graph processing systems. No-
tations used in this paper are shown in Table 1.

2.1 Graph Processing Models
Let V and E denote the vertex and edge sets in a graph

G, the computation task over G = (V , E) is to calculate
the updated value of V and E. We assume each edge is
directed, and an undirected graph can be realized by adding
an opposing edge to each directed edge.

Gather-Apply-Scatter. When updating the value of V ,
updates are propagated from the source vertex to the des-
tination vertex. Such model is known as the Gather -Apply-
Scatter (GAS) model [2] which divides the update into three
phases. In the Gather phase, a vertex receives value from
source vertices of in-edges. Then, the updated value is cal-
culated in the Apply phase. After that, the updated value
is propagated to the destination vertices of out-edges. The
GAS model can be executed in the form of iterations. In
each iteration, each edge is accessed once to propagate up-
dates from the source vertex to the destination vertex. Fig-
ure 1(b) illustrates the three phases of the GAS model.

Vertex-centric and edge-centric. As mentioned in the
GAS model, updates are propagated from vertices to vertices
through edges. Thus, the access sequence of edges differen-
tiates different models, including vertex -centric (VC) model
[6] and edge-centric (EC) model [12]. In VC model, a ver-
tex scatters value to destination vertices of all out-edges (or

218

Algorithm 1 Pseudo-code of Breadth-First Search

Input: G = (V,E), root vertex r
Output: depth of each v ∈ V , d(v)
1: d(r) = 0
2: for each v ∈ V & v �= r do
3: d(v) = ∞
4: end for
5: finished = false
6: while (finished = false) do
7: finished = true
8: for each edge e do
9: if d(esrc) + 1 < d(edst) then
10: finished = false
11: d(edst) = d(esrc) + 1
12: end if
13: end for
14: end while
15: return d(v), v ∈ V

gathers value from source vertices of all in-edges). In con-
trast, in EC model, all edges are sequentially accessed while
the access sequence of source/destination vertices is disor-
dered. Both VC and EC model have been implemented in
previous systems and achieved excellent performance. Fig-
ure 1(c) shows an example of VC and EC model.

Interval-shard based partitioning. Graph partition-
ing is a widely used method which ensures the locality of
graph data access. GraphChi [4] uses an interval-shard based
partitioning model. Vertices and edges in a graph are di-
vided into P intervals (vertex sets) and shards (edge sets).
Later systems [10, 11] further divide edges into P 2 blocks
according to the corresponding intervals of the source and
destination vertices. For example, Bx→y contains all edges
linked from Ix to Iy. Figure 1(d) shows an example of
interval-shard based partitioning model.

Based on these models, the computation task is performed
in the form of iterations. In each iteration, all blocks are ac-
cessed at most once. Updates are propagated from source
vertices to destination vertices. Algorithm 1 shows the pseudo-
code of Breadth-First Search (BFS) using these models. In
the beginning, the depth of the root vertex is set to zero,
and others are infinite. In each iteration, edges are sequen-
tially accessed (Note that the accessing order of edges is not
specified in Algorithm 1, we will explain the detailed order
in ForeGraph in our implementation.). The depth of the
corresponding destination vertex will be modified according
to the depth of source vertex. Such algorithm can be easily
transformed into other graph algorithms by modifying the
code of propagation.

2.2 FPGA-based Graph Processing Systems
FPGA has been proved as a promising solution to many

applications and previous work has provided large-scale graph
processing systems based on FPGA [16, 27, 17, 18, 19,
20, 21, 22, 23]. Most of these systems are designed for a
single FPGA chip. Some of these systems are only dedi-
cated to specific algorithms, like Breadth-First Search (BFS)
or PageRank (PR). There are also many general purposed
systems which can apply to different graph algorithms, in-
cluding GraphStep [20], GraphGen [21] and GraphOps [22].
GraphStep and GraphGen are two systems that applied VC
model to FPGA. GraphOps provides a modular hardware
library for constructing accelerators for graph analytics al-

gorithms. Shijie et al. [23] proposed a system to minimize
row-conflicts using EC model. However, the size of graphs
on all these systems is limited by memory resources on an
FPGA board.

There are also some systems based on the multi-FPGA
architecture. Betkaoui et al. [17] proposed a BFS solu-
tion on Convey HC-1 machine consisted of 4 FPGA boards.
However, this system can hardly be applied to other graph
algorithms. FPGP [18] provided a large-scale graph pro-
cessing framework and it can be expanded to multi-FPGA
architecture using a Shared-Vertex Memory (SVM). How-
ever, since all FPGA boards need to be connected to SVM,
the system performance, as well as the scalability, is limited
by the bandwidth of the SVM.

3. SYSTEM ARCHITECTURE
In this section, we will discuss the system architecture

of ForeGraph. The data allocation and processing flow in
ForeGraph will be explained in detail, followed by intercon-
nection scheme and partitioning scheme.

3.1 Overall Architecture
The overall architecture of ForeGraph is shown on the left

of Figure 2. ForeGraph consists of several FPGA boards.
On each board, there is an FPGA chip to perform processing
logic and off-chip memory to store graph data. All boards
are connected by the interconnection. Such interconnection
can be realized using the bus (e.g. PCI-e), directed optical
fiber connections or other available structures. The detailed
processing logic is shown on the right of Figure 2. The logic
includes an interconnection controller, an off-chip memory
controller, a data controller, a dispatcher and several pro-
cessing elements (PEs).
• Interconnection controller. Data transmission among

FPGA boards is controlled by interconnection controller.
• Off-chip memory controller. The off-chip memory

controller arranges the data read/write of the off-chip
memory. The controller can be realized by using exist-
ing IP core generators (e.g. Memory Interface Generator
in Xilinx Vivado). When performing graph algorithms,
data loaded to processing elements are all from the off-
chip memory through this controller.

• Data controller. The data controller connects the off-
chip memory controller and the interconnection controller.
It packs and calculates the memory address and target
board ID when transmitting data among boards.

• Processing elements (PEs). PEs are the kernel logic
for executing graph algorithms on the FPGA board. As
mentioned in Section 2.1, updates are propagated from
the source vertex to the destination vertex using the cor-
responding edge. Thus, each PE contains a source buffer
and a destination buffer storing source vertices and desti-
nation vertices respectively. Both source buffer and des-
tination buffer are implemented using general purposed
dual-port BRAMs. There is another edge buffer storing
edges loaded from the off-chip memory. Edges are se-
quentially loaded from off-chip memory when updating.
Both vertices and edges are sent to the processing logic,
and the results will be calculated and written to the des-
tination buffer. Different graph algorithms only differ in
processing logic. When the updating for all vertices in
the destination buffer finished, the results will be written
to the off-chip memory, and new vertices and edges will

219

FPGA Chip

Off-chip
Memory

FPGA Chip

Off-chip
Memory

FPGA Chip

Off-chip
Memory

FPGA Chip

Off-chip
Memory

FPGA Chip

Off-chip
Memory

FPGA Chip

Off-chip
Memory

FPG
A board

Interconnection

Interconnection
Controller

O
ff-chip M

em
ory

Controller

Dispatcher

Source
Buffer

Destinatio
n Buffer

Edge
Buffer

Processin
g

Logic

Source
Buffer

Destinatio
n Buffer

Edge
Buffer

Processin
g

Logic

Source
Buffer

Destinatio
n Buffer

Edge
Buffer

Processin
g

Logic

Source
Buffer

Destination
Buffer

Edge
Buffer

Processing
Logic

Processing Elem
ents

Data Controller

Figure 2: Overall architecture of ForeGraph (left) and on-chip processing logic (right).

SB1 1,

1 1

, SB1 1,

1 2

SB1 1,

2 1

, SB1 1,

2 2

SB1 1,

1 Q

SB1 1,

2 Q

SB1 1,

Q 1

, SB1 1,

Q 2

SB1 1,

Q Q

B1 P

BP 1

BP P

SI1,1 SI1,2 SI1,Q IP

IP
SI1,1

SI1,2
SI1,Q

Off-chip
Memory

SI1,1

SI1,2

SI1,Q

SB1 1,

1 1

SB1 1,

Q Q

B1 2

B1 P

Processing
Element 1 SI1,1

SI1,1

SB1 1,

1 1

Processing
Logic

Processing
Element K SI1,1

SI1,K

SB1 1,

K 1

Processing
Logic

Off-chip
Memory

SI1,1

SI1,2

SI1,Q

SB1 1,

1 1

SB1 1,

Q Q

B1 2

B1 P

Processing
Element 1 SI1,1

SI1,1

SB1 1,

1 1

Processing
Logic

Processing
Element K SI1,1

SI1,K

SB1 1,

K 1

Processing
Logic

FPGA Board

FPGA Chip

Figure 3: On-board data allocation (left) and two-
level partitioning in ForeGraph (right).

be loaded to these buffers. Assuming the bandwidth of
off-chip memory is around 10 GB/s per board, and the
processing logic runs at the frequency around 200 MHz.
We use 8 Bytes to represent an edge (4 Bytes for source
vertex and destination vertex respectively). Based on the
fact that the throughput of a single PE (200 MHz × 8
Bytes = 1.6 GB/s) is much smaller than the bandwidth
of off-chip memory, using several PEs can fully utilize the
off-chip memory bandwidth.

• Dispatcher. The dispatcher connects the off-chip mem-
ory controller and data buffers in PEs. When vertices and
edges are loaded from the off-chip memory, the dispatcher
sends data to corresponding PEs. The data allocation in
different PEs is explained in detail in Section 3.2.

3.2 Data Allocation in Off-chip Memory
Graphs are divided into intervals (I) and shards (S) in

ForeGraph. Each interval, as well as its corresponding shard,
is assigned to the off-chip memory on an FPGA board. For
example, in a ForeGraph system consisting of P FPGA
boards, I1 and S1 are stored on the first FPGA board. S1

consists of P blocks namely B1→1 ∼ BP→1. Each block is
responsible for updating I1 using different source intervals.
These source intervals are stored in other FPGA boards and
loaded to the first board in turn during run-time.

Considering there are several PEs in a chip and each PE
contains two exclusive vertex buffers using BRAMs, the on-
chip memory resources are not enough to store an interval
as the graph size continues to grow. In ForeGraph, we adopt
a two-level graph partitioning scheme shown on the right of
Figure 3. Take the first interval I1 as an example, in this
two-level graph partitioning scheme, I1 is further divided
into Q sub-intervals, SI1,1 ∼ SI1,Q. Correspondingly, block
B1→1 is further divided into Q2 sub-blocks, SB1→1,1→1 ∼

SB1→1,Q→Q. Each sub-block is responsible for updating a
destination sub-interval using a source sub-interval.

When executing graph algorithms, different source sub-
intervals are loaded to different PEs, while the destination
sub-intervals are same in these PEs. These PEs update the
destination sub-interval using corresponding sub-blocks. An
example of data allocation when executing graph algorithms
in ForeGraph is shown on the left of Figure 3. SI1,1 ∼
SIK,1 are loaded to PE 1 ∼ PE K and the destination sub-
interval is SI1,1 in all PEs. Edges in corresponding sub-
blocks are loaded to edge buffers of each PE. When all PEs
finished updating for SI1,1, ForeGraph substitutes unused
sub-intervals in the off-chip memory since those in PEs can
continue to execute graph algorithms.

Intervals on other boards are loaded to local off-chip mem-
ory in turns. For example, the processing flow of the first
board: updating I1 using I1 and B1→1 → loading I2 from
the second board → updating I1 using I2 and B2→1 → dis-
carding I2 on the first board, and so on.

3.3 On-chip Data Replacement Flow
When using an interval to update another interval, all Q2

sub-blocks will be accessed. However, only K sub-intervals
are processed at one time. Thus, ForeGraph schedules how
to substitute sub-intervals in off-chip memory for those on
the chip. An example of two different replacement strategies
is shown in Figure 4. An interval is divided into four sub-
intervals, and two PEs are implemented on the chip.

In the destination-first replacement (DFR) strategy, when
two PEs finish updating the same destination sub-interval,
ForeGraph writes it to the off-chip memory and replaces it
with another sub-interval (Step 1 to Step 8 in Figure 4(a)).
After all sub-intervals being updated using source sub-intervals
in two PEs, ForeGraph replaces them with other new sub-
intervals (Step 4 to Step 5 in Figure 4(a)). When all edges in
B1→1 have been accessed, other intervals will be loaded, and
ForeGraph will repeat previous steps using these intervals as
source intervals (Step 9 in Figure 4(b)).

In the source-first replacement (SFR) strategy, the source
sub-intervals rather than the destination sub-intervals will
be replaced (Step 1 to Step 2, Step 3 to Step 4, Step 5 to
Step 6, Step 7 to Step 8 in Figure 4(b)). When a sub-interval
has been updated by all sub-intervals, ForeGraph replaces it
with a new sub-interval (Step 2 to Step 3, Step 4 to Step 5,
Step 6 to Step 7 in Figure 4(b)). Similarly, other intervals
will be loaded, and previous steps will be repeated after all
edges in B1→1 have been accessed (Step 9 in Figure 4(b)).
DFR and SFR differ in the data amount they read from/write

220

Update SI1,2

Update SI1,1

Update SI1,4

Update SI1,3

Update SI1,2

SI1,1 SI1,1

SI1,1 SI1,2

SI1,2

SI1,2 SI1,2

SI1,1

SI1,1 SI1,2SI1,3 SI1,3

SI1,2 SI1,4SI1,4SI1,1

SI1,4 SI1,1SI1,1SI1,3

SI1,3 SI1,2 SI1,4 SI1,2

SI1,3 SI1,3 SI1,4 SI1,3

SI1,4 SI1,4SI1,4SI1,3

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8

Load other source intervals
from other board in turn.
Repeat Step 1 to Step 8.

Step 9

PE 1 PE 2
src dst src dst

Update SI1,1

Update I1 using other intervals

2

1

44444

3

2

111

Update I1 using I1

Update SI1,4

Update SI1,3

(a) Destination-first replacement.

Update SI1,4

Update SI1,3

Update SI1,2

SI1,1 SI1,1

SI1,3 SI1,1

SI1,2

SI1,4 SI1,1

SI1,1

SI1,1 SI1,2SI1,2 SI1,2

SI1,4 SI1,2SI1,2SI1,3

SI1,2 SI1,3SI1,3SI1,1

SI1,3 SI1,3 SI1,4 SI1,3

SI1,1 SI1,4 SI1,2 SI1,4

SI1,4 SI1,4SI1,4SI1,3

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8

Load other source intervals
from other board in turn.
Repeat Step 1 to Step 8.

Step 9

PE 1 PE 2
src dst src dst

Update SI1,1

Update I1 using other intervals

4

3

2

1

Update I1 using I1

(b) Source-first replacement.
Figure 4: Two different replacement strategies.

to off-chip memory. In both DFR and SFR, all Q2 sub-
blocks (or sub-interval pairs) need to be processed. For there
are K PEs on a chip, we need Q2/K steps to finish the up-
dating of a sub-block. For example, in Figure 4 with K = 2
PEs on a chip and Q = 4 sub-intervals in an interval, there
are 8 (=42/2) steps in total. In DFR, the destination sub-
interval (same in all PEs) needs to be written to the off-chip
memory, and a new sub-interval is loaded after each step.
Thus, the read and write time for destination sub-intervals
in DFR are bothQ2/K. Moreover, allQ source sub-intervals
need to be loaded once. Consequently, the number of sub-
intervals read/write are (Q+Q2/K) and Q2/K respectively.
In SFR, source sub-intervals in allK PEs need to be replaced
after each step. Thus, the read time for source sub-intervals
is (Q2 = Q2/K×K). Moreover, all destination sub-intervals
need to be read/written once in SFR, which results in Q
more read/write times of sub-intervals. According to the
analysis, the number of sub-intervals read from/written to
the off-chip memory is (Q+Q2) and Q respectively in SFR.

Table 2: Number of sub-intervals read from/written
to the off-chip memory when processing a block

read write

destination-first replacement Q+Q2/K Q2/K

source-first replacement Q+Q2 Q

As we can see from Table 2, the advantage of DFR lies
in the read time of sub-intervals while SFR costs less write
time (we assume that 1 < K < Q). Let Tr and Tw denote
the average read/write time of a sub-interval, Formula (1)
shows the situation where DFR outperforms SFR.

(Q+
Q2

K
)× Tr +

Q2

K
× Tw < (Q+Q2)× Tr +Q× Tw (1)

In ForeGraph, data are stored in DRAMs (same read/write
bandwidth, different from other emerging devices like the
non-volatile memory). Therefore, it is fair to assume that
Tr = Tw. Formula (1) can be simplified into Formula (2).

(Q+ 1)(K − 2) > −2 (2)

Generally speaking, there are more than two PEs on a
chip, which leads to (Q + 1)(K − 2) ≥ 0 > −2. Thus, we
adopt DFR in ForeGraph to minimize the data transmitted
between the chip and the off-chip memory.

3.4 Interconnection
Much previous work proposed interconnection schemes

among FPGAs like Catapult [28]. In Catapult, up to 48
FPGAs are connected using SerialLite III link in a torus
network. It provides a peak theoretical bandwidth at 2×766
MB/s of each connection. The latency of each connection
is around 400 ns. ForeGraph adopts the interconnection
scheme in Catapult. We simulate the network consumption
and compare it with other network structure (e.g. mesh,
bus, and etc.) in Section 6.

Compared with distributed systems like Pregel [6] which
transmits messages (update value from source vertices) to
other computing nodes, we combine messages and update
vertices locally in ForeGraph. Only updated the value of
vertices are transmitted, and we minimize the data trans-
mission amount so ForeGraph scales to larger graphs.

3.5 Index-based Partitioning
In ForeGraph, vertices are divided into P intervals and

further into P ·Q sub-intervals. Edges are also classified by
their source and destination vertices. Different from previ-
ous systems like Graphchi [4] which needs to sort all edges
in (sub-) blocks, ForeGraph only needs to assign vertices
and edges to the corresponding (sub-) intervals and (sub-)
blocks. Such implementation can significantly reduce the
time consumption of pre-processing.

Before partitioning, we determine P and Q. Then all ver-
tices are assigned to corresponding sub-intervals using hash
function. For example, v1, v1+ n

PQ
, v1+2· n

PQ
, and etc. are

assigned to SI1,1 (such partitioning method can balance the
size of each block, shown in Table 8). Edges are also clas-
sified in this way without sorting. We reduce the overhead
of pre-processing from O(m logm) to O(m) by using index-
based partitioning scheme (m denotes the number of edges).

Another advantage of this index-based partitioning is the
fact that it can easily apply to dynamic graph algorithms.
Previous systems need to sort all edges before updating,
thus when the structure of the graph changes (e.g. insert-
ing/deleting edges), the entire pre-processing needs to be
redone. In ForeGraph, such overhead can be avoided be-
cause the order of edges in a (sub-) block is not required.

4. SYSTEM OPTIMIZATION
Based on the design for multi-FPGA in Section 3, we in-

troduce three optimization methods to reduce data trans-
mission amount and fully utilize PEs on one FPGA board.

4.1 Vertex Index Compression
Both vertices and edges are stored in off-chip memory thus

compressing these data can significantly improve the perfor-
mance of ForeGraph. In ForeGraph, we need to store the

221

iK edges

sub-block index 1 compressed
src index 1

compressed
dst index 1

compressed
src index i1

compressed
dst index i1

edge edge

compressed
src index 1

compressed
dst index 1

compressed
src index i2

compressed
dst index i2

edge edge

compressed
src index 1

compressed
dst index 1

compressed
src index iK

compressed
dst index iK

edge edge

address in DRAM

i1 edges

sub-block index 2

sub-block index K

i2 edges

sub-block index 1 compressed
src index 1

compressed
dst index 1

compressed
src index i1

compressed
dst index i1

gedgedg edgegdSB1

SB2

SBK

compressed
src index 1

compressed
dst index 1

compressed
src index i2

compressed
dst index i2

gedgedg gedged

sub-block index 2

SB2

compressed
src index 1

compressed
dst index 1

compressed
src index iK

compressed
dst index iK

edgedg edged

sub-block index K

SBKKK

Figure 5: Vertex index compression using the sub-
block index (SBx contains ix edges).

PE 1

PE 2

edge 1 PE 1

PE 2

edge 2 PE 1

PE 22 edge 3 22 edge 4

PE 1

PE 2

edge 1 PE 1

PE 2

edge 2

2 edge 42 edge 3

edge 1

edge 2

edge 3

edge 4

edge 1

edge 3

edge 2

edge 4

order
order

Clock cycle 1 Clock cycle 2 Clock cycle 3

shuffled

not
shuffled

edge assigned to PE1

edge assigned to PE2

Figure 6: Shuffling edges to fully utilize PEs (FPGA
chip can load two edges per clock cycle).

value of each vertex and the source/destination vertex in-
dexes of each edge. The storage space for the value of each
vertex is related to the dedicated algorithms (e.g. 8bits for
the depth of each vertex in BFS). The compression of these
data is not in the scope of this paper’s discussion. The stor-
age space for each edge is twice the size of the vertex index.
For example, in the Twitter [29] graph which consists of 42
million vertices, we need log2(42 × 106) = 25 bits to repre-
sent a vertex in this graph. The length of the vertex index
can be even over 32 bits when the graph contains more than
4 billions (= 232) of vertices.
Source/Destination vertices of edges in a sub-block are all

in the same sub-interval. We can use a sub-block index as
a prefix to the vertex index. For instance, assuming there
are 100 sub-intervals in the graph, we divide vertices with
constant stride (100) into a sub-intervals. In this way, SI1
includes v1, v101, v201... In this sub-interval, we use 1 as a
prefix and all vertices in SI1 can be indexed according to
the position in sub-interval (e.g. v101 is the second vertices
in SI1). Thus, the indexes of vertices do not exceed n

100
(number of vertices in a sub-interval).

Figure 5 shows the data placement in DRAM using our
vertex index compression method. Each sub-block begins
with its sub-block index, followed by compressed edge index.
In ForeGraph implementation, we use 2 Bytes (16 bits) to
represent the vertex index. Thus, there are less than 216 =
65536 vertices in a sub-interval.

4.2 Shuffling Edges
As mentioned in Section 3.3, K PEs on a chip update one

sub-interval using K consecutive sub-blocks. Utilization of
PEs is inefficient in the way shown in Figure 5. Consecutive
edges will be sent to only one PE because the source vertices
are in the same sub-interval. However, a PE can only update
one edge per clock cycle. Meanwhile, other PEs are idle in
this situation. To settle such problem, we shuffle edges in
these K sub-blocks.

sub-block index
1~K

compressed
src index 1

compressed
dst index 1

compressed
src index 1

compressed
dst index 1

compressed
src index 1

compressed
dst index 1

edge edge edge

NULL NULL compressed
src index i2

compressed
dst index i2

NULL NULL

edge edge edge

address in DRAM
K edges

compressed
src index 1

compressed
dst index 1

edged

NULL NULL

edged

compressed compressed compressed
src index 1

compressed
dst index 1

edged

compressed
src index i2

compressed
dst index i2

edged

compressed compressed

K dK edK eK e gesgesgesgeseg

compressed
src index 1

compressed
dst index 1

edged

NULL NULL

edged

compressed compressed

SB1 SB2 SBK

Figure 7: Shuffling edges in K sub-blocks (assuming
SB2 is larger than SB1 and SBK , i2 > i1, i2 > ik).

SBx y,1 1

SBx y,2 1

SBx y,K 1

SBx y,Q 1

SBx y,1 1

SBx y,2 1

SBx y,K 1

SBx y,Q 1

SBx y,1 2

SBx y,2 2

SBx y,K 2

SBx y,Q 2

2

SBx y,1 2

SBx y,2 2

SBx y,K

SBx y,Q 2

SBx y,1 Q

SBx y,2 Q

SBx y,K Q

SBx y,Q Q

SBx y,1 Q

SBx y,2 Q

SBx y,K Q

SBx y,Q Q

y,K 2

Figure 8: The order of accessing sub-blocks (sub-
blocks in a dashed box are shuffled).

Figure 6 shows an example of why shuffling edges can
fully utilize all PEs. In Figure 6, there are two PEs and
four edges are assigned to both of them. The bandwidth of
the off-chip memory provides the throughput of loading two
edges to the FPGA chip per cycle. If edges in a sub-block
are in consecutive order, it takes three clock cycles to finish
updating because only one edge is processed in the first and
third clock cycle. However, if edges are shuffled, it only takes
two clock cycles, and two edges are processed during each
cycle.

Based on this shuffling method, we proposed the edge
shuffling method which is shown in Figure 7. Edges in K
consecutive sub-blocks are shuffled. K consecutive edges
in DRAM are in different sub-blocks thus they are sent to
different PEs. If the sizes of sub-blocks are different, Fore-
Graph uses a NULL edge to fill in the blank position (gray
blocks in Figure 7). We adopt DFR thus the destination
sub-interval is replaced when all PEs finished updating. Fig-
ure 8 shows an example of the accessing order of sub-blocks
in Bx→y. K consecutive sub-intervals are loaded to the chip
to update all sub-intervals. After loading sub-intervals, shuf-
fled edges are loaded and dispatched to each PE.

4.3 Skipping Useless Blocks
In Algorithm 1, edges in all blocks are accessed in one

iteration. However, previous work [30, 31] show that in al-
gorithms like BFS, only some vertices are updated in one
iteration. If a vertex is not updated, its neighbor vertices
will not be updated in the next iteration. Thus, we do not
have to access its outgoing edges.

Based on such observation, we can skip some edges if their
source vertices are not updated in the prior iteration. Fur-
thermore, if all vertices in one (sub-) interval have not been
updated in one iteration, outgoing edges in (sub-) blocks
with source vertices in the (sub-) interval do not need to be
accessed in the next iteration. In this way, we can load fewer
edges from the off-chip memory and skip (sub-) blocks which
are unnecessary to be transmitted. In the implementation
in ForeGraph, we use one bit in a bitmap [31] to represent
if a sub-interval is updated in an iteration.

222

Table 3: Notations used in analysis

Notation Meaning

BWmem bandwidth of the off-chip memory

BWint bandwidth of the interconnection

Sv space used to store a vertex

Se space used to store an edge

Mbram on-chip BRAM size

f frequency of on-chip logic

5. THEORETICAL ANALYSIS
In ForeGraph, parameters like P and Q need to be set be-

fore implementation. In this section, we analyze how these
parameters influence the performance of ForeGraph. Nota-
tions used in this section are listed in Table 3.

5.1 Modeling of ForeGraph
The processing time of an FPGA board mainly includes

the following three parts:
• Tprocess, time of reading/writing sub-intervals from/to the

off-chip memory before updating.
• Tload, time of loading edges from the off-chip memory

when updating. We assume that on-chip throughput of
all PEs is larger than off-chip bandwidth.

• Ttransmit, time of loading intervals from other boards.
We assume that all n vertices and m edges are evenly

divided into PQ and P 2Q2 partitions (based on Table 8).
Thus a sub-interval contains n/(PQ) vertices and a sub-
block contains m/(P 2Q2) edges. The first constraint is that
on-chip BRAM size is sufficient to store all K source sub-
intervals and destination sub-intervals.

Mbram ≥ 2 ·K · n

PQ
· Sv → Q

K
≥ 2 · n · Sv

P ·Mbram
(3)

The second constraint relies on our vertex index compres-
sion method. We use no more than 16 bits to represent a
vertex in a sub-interval. Thus a sub-interval contains less
than 216 = 65536 vertices.

n

PQ
≤ 65536 (4)

The third constraint is that on-chip throughput is larger
than off-chip bandwidth. We assume that the logic in PEs is
designed in a pipelined architecture. Thus a PE can process
one edge per clock cycle. The maximal on-chip throughput
is K · Se · f .

K · Se · f ≥ BWmem (5)

Formula (3)∼(5) show the constraints in ForeGraph. Based
on these constraints, we calculate the processing time of an
FPGA board. Table 2 shows that in ForeGraph (Q+ 2Q2/
K) sub-intervals are read from/written to the off-chip mem-
ory when processing a block. A board needs to process P
blocks in total thus we get Tprocess in Formula (6).

Tprocess =
(Q+ 2Q2

K
)P n

PQ
Sv

BWmem
=

n · Sv

BWmem
· (1 + 2Q

K
) (6)

Edges in P blocks are loaded to the FPGA chip. Thus,
we get Tload in Formula (7).

Tload =
m
P

· Se

BWmem
(7)

Intervals on other FPGA boards are transmitted to the
board thus we get Ttransmit in Formula (8).

Ttransmit =
(P − 1) · n

P
· Sv

BWint
≈ n · Sv

BWint
(8)

Based on Formula (6)∼(8), we can get the whole process-
ing time of an FPGA board T = Tprocess+Tload+Ttransmit.

5.2 Influence of Parameters on ForeGraph
Substitute Formula (3) into Formula (6), we get Formula (9).

Tprocess ≥ n · Sv

BWmem
· (1 + 4 · n · Sv

P ·Mbram
) (9)

We simplify Tprocess ∼ Ttransmit and get T in Formula (10).

T = Tprocess + Tload + Ttransmit ≥ α+ β · 1

P
(10)

In Formula (10), α and β are two constants, show in For-
mula (11) and Formula (12).

α =
n · Sv

BWmem
+

n · Sv

BWint
(11)

β =
4 · n2 · S2

v

BWmem ·Mbram
+

m · Se

BWmem
(12)

From Formula (10) we conclude that larger P (using more
FPGA boards) leads to better performance in ForeGraph.
However, in the real implementation, larger P leads to un-
balance problem between partitions and decline of BWint,
thus simply increasing P cannot improve the performance
when P reaches a threshold. Moreover, Q and K need to
meet the condition for equality in Formula (3)∼(5).

5.3 Comparison with Other Systems
We compare ForeGraph with two state-of-the-art FPGA-

based large-scale graph processing systems, FPGP [18] and
Shijie’s work [23] (we call Shi in the following paper). We
divide vertices into Q partitions. Both FPGP and Shi store
vertices on the chip as many as possible. In FPGP, there is
a Shared-Vertex Memory (SVM) connected to all FPGAs.
Such implementation limits the scalability to multi-FPGA
because the total bandwidth of SVM is limited. There are
two source buffers on the chip thus it processes K/2 par-
titions equivalently. All edges are read once in FPGP. Shi
uses the off-chip memory to store the temporary value of
vertices, yet it cannot scale to the multi-FPGA architecture.
All edges are read and written once respectively. On-chip
BRAMs can store 2K partitions. Each partition needs to be
read once when writing edge list and read/write once when
reading the message list. Moreover, reading and writing of
an edge in Shi are attached with a vertex value.

We compare the performance of the three systems on one
FPGA board (FPGP does not scale well to multi-FPGA,
and Shijie’s work does not support multi-FPGA). The com-
parison result is shown in Table 4. Cells in the gray back-
ground show the system with the best performance from one
perspective. ForeGraph outperforms the other two systems
in terms of minimum data transmitting amount, maximal
edges updated per cycle and scalability.

223

Table 4: Comparison between ForeGraph and other systems

FPGP [18] Shijie’s work [23] ForeGraph (ours)

read 2Q/K · nSv +mSe 2nSv +mSe +mSv (1 +Q/K)nSv +mSe

write nSv nSv +mSv Q/K · nSv

read+write (assuming m = 10n and Q = 4K) 9nSv + 10nSe 23nSv + 10nSe 9nSv + 10nSe

edges updated per cycle two edges per cycle at most K edges per cycle K edges per cycle

multi-FPGA scalability not scale well no scale well

6. EXPERIMENTAL RESULTS
Based on the system design and optimization methods,

we conduct several experiments using different algorithms
on different graphs. We also compare the performance of
ForeGraph with state-of-the-art systems in this section.

6.1 Experimental Setup
We evaluate the performance of ForeGraph on the Xil-

inx Virtex UltraScale VCU110 evaluation platform with an
xvcu190 FPGA chip. The target FPGA chip provides 16.61
MB on-chip BRAM resources. We verify the correctness of
ForeGraph and get the clock rate as well as resource uti-
lization using Xilinx Vivado 2016.2. All these results are
from post-place-and-route simulations. The target off-chip
memory is Micron MTA8ATF51264HZ-2G3 SDRAM (2GB,
DDR4) and we use DRAMSim2 [32] to simulate the time
consumption when accessing off-chip data. The memory
runs at 1.2 GHz and provides a peak bandwidth of 19.2
GB/s. We simulate the time consumption of interconnec-
tion based on the Microsoft Catapult, it provides a stable
latency around 400 ns and bandwidth around 12.25 Gb/s.

Table 5: Properties and acronyms of graphs

Vertices # Edges

com-youtube (YT) [33] 1.16 million 2.99 million

wiki-talk (WK) [33] 2.39 million 5.02 million

live-journal (LJ) [33] 4.85 million 69.0 million

twitter-2010 (TW) [29] 41.7 million 1.47 billion

yahoo-web (YH) [34] 1.41 billion 6.64 billion

To evaluate the performance of ForeGraph, we implement
it using three graph algorithms on five real-world graphs.
Three graph algorithms include PageRank (PR), Breadth-
First Search (BFS) andWeakly Connected Components (WCC).
The properties of target graphs are shown in Table 5. The
first three graphs can be implemented using one FPGA board
while the latter two graphs need to be implemented on the
multi-FPGA architecture. We use acronyms for these graphs
and algorithms in our experimental results.

6.2 Resource Utilization
We use 8 bits to represent the depth of a vertex in BFS and

32 bits to represent the value of a vertex in PR and WCC.
The average width of an edge is 32 bits (16 bits for the
source vertex and 16 bits for the destination vertex) using
our vertex index compression method. In this way, there
are at most 65536 vertices in a sub-block. A sub-block uses
8 bits × 65536 = 64 KB BRAM resources in BFS and 32
bits × 65536 = 256 KB BRAM resources in PR/WCC. We
implement 96 PEs when executing BFS and 24 PEs when
executing PR/WCC. Detailed resource utilization, as well
as clock rate, is shown in Table 6.

Table 6: Resource utilization and clock rate

BFS PR WCC

PEs 96 24 24

LUT 31.2% 33.4% 35.9%

Register 17.3% 20.6% 19.7%

BRAM 89.4% 81.0% 81.0%

Maximal clock rate 205 MHz 187 MHz 173 MHz

Simulation clock rate 200 MHz 150 MHz 150 MHz

6.3 Execution Time and Throughput
We implement three algorithms (BFS, PR, WCC) on four

graphs (YT, WK, LJ, TW). Only one FPGA board is used
when processing YT, WK, and LJ, while four FPGA boards
are used when processing TW in our simulation.

Table 7: Execution time/throughput of ForeGraph

Algorithm Graph
Execution

time(s)

Throughput

(MTEPS)

BFS

YT 0.010 897

WK 0.027 929

LJ 0.452 1069

TW 15.12 1458 (364/board)

PR

YT 0.030 997

WK 0.052 965

LJ 0.578 1193

TW 7.921 1856 (464/board)

WCC

YT 0.016 934

WK 0.021 956

LJ 0.307 1124

TW 24.68 1727 (432/board)

Table 7 shows that the throughput of ForeGraph is around
1000 MTEPS when processing small graphs (e.g. YT, WK,
and LJ). When processing larger graphs (e.g. TW) on the
multi-FPGAs, the throughput decreases to 400 MTEPS be-
cause of the inter-FPGA communication and frequent sub-
stitution of on-chip data.

6.4 Benefits of Optimization Methods

6.4.1 Benefits of Vertex Index Compression
In ForeGraph, a vertex is indexed in its corresponding

sub-interval using 16 bits. Table 5 shows the number of
vertices in each graph with which we can calculate the re-
quired bit width to represent a vertex in each graph us-
ing the naive coding method. A vertex needs to be repre-
sented with log2(1.1 × 106) = 21 bits in the YT graph and
log2(1.4×109) = 31 bits in the YW graph. Thus, ForeGraph
reduces the edge data amount by 23.81%∼48.39%.

224

6.4.2 Benefits of Edge Shuffling
ForeGraph processes K source sub-intervals simultane-

ously and edges in corresponding sub-blocks are loaded to
PEs. We use the edge shuffling method to avoid the case
that few PEs are overburdened, while others are idle wait-
ing edges. We execute the PR (10 iterations) on four graphs
using two different methods, the randomized (randomizing
edges in each K sub-blocks) and shuffled order. 1 2

Table 8: Benefits of edge shuffling

YT WK LJ TW

edges1
randomized 2.99m 5.02m 69.0m 1.47b

shuffled2 393m 704m 12.5b 334b

shuffled 3.77m 5.58m 92.6m 1.72b

edge data increased2 131x 140x 181x 234x

edge data increased 1.26x 1.11x 1.34x 1.17x

Texe
randomized 0.041s 0.077s 0.952s 16.55s

shuffled 0.030s 0.052s 0.578s 7.921s

speedup 1.37x 1.48x 1.65x 2.09x

Table 8 shows the comparison between two edge arrange-
ment methods. In the edge shuffling method, we need to
insert several NULL edges (Figure 7) thus it increases 1.22x
edge data amount on average (If we divide consecutive ver-
tices rather than vertices with a constant stride into an inter-
val, the edge size is 172x on average due to the unbalanced
size of each sub-block. The reason is the power − law char-
acteristic of natural graphs, vertices with most in-edges are
divided into one interval and sizes of its sub-blocks will be
much large than other sub-blocks. Only one PE is working
in this situation.). However, such increase of edges can lead
to 1.66x performance improvement on average because we
balance the workload of different PEs.

6.4.3 Benefits of Block Skipping
A source (sub-) interval, as well as corresponding out-

edges, is skipped in an iteration when it is not updated
in the prior iteration. Such optimization method leads to
fewer data transmission between on-chip BRAMs and off-
chip memories. We execute the BFS algorithm on four
graphs and change the number of (sub-) intervals to show
the ratio of transmitted (sub-) intervals/edges in Figure 9.

If we divide graphs into thousands of partitions, only
35%∼50% (sub-)intervals/edges are transmitted using our
skipping method, shown in Figure 9. In this way, we reduce
the transmitted data amount in ForeGraph.

6.5 Scalability
Section 5 shows that larger P leads to performance im-

provement. However, the interconnection scheme has the
influence on the performance. We simulate four different in-
terconnection schemes, including full interconnection (point-
to-point connection), torus interconnection (implemented in

1
m stands for million and b stands for billion.

2
We compare two partitioning methods. Results with this footnote

divide consecutive vertices into an interval (e.g. v1, v2, v3...). This
partitioning scheme is widely used in many state-of-the-art systems
like Gemini [7] and NXgraph [10]. Results without footnote are from
our partitioning method which divides vertices with a constant stride
into an interval (e.g. v1, v101, v201...). Actually, the partitioning
method is heavily dependent on the given vertex labeling, while nat-
ural graphs follow power-law and vertices with higher degrees seem
to have smaller indexes.

40%
44%
48%
52%
56%
60%

Number of (sub-)intervals

WK
 intervals
 edges

45%
47%
49%
51%
53%
55%

Number of (sub-)intervals

YT
trans intervals

edges

30%
35%
40%
45%
50%
55%
60%
65%
70%

Number of (sub-)intervals

LJ
 intervals
 edges

30%
35%
40%
45%
50%
55%
60%
65%
70%

Number of (sub-)intervals

TW
 intervals
 edges

Figure 9: Transmitted (sub-)intervals/edges, exe-
cuting BFS (varying number of (sub-)intervals).

Catapult), mesh (each FPGA board is connected to adja-
cent ones) and bus (all FPGA boards are connected using
the bus). In these four schemes, the bandwidth and latency
of a physical connection are all set to 12.25 Gb/s and 400
ns. We implement the PR algorithm on TW and YH.

1

2

4

8

16

4 8 16 32

Ex
ec

ut
io

n
tim

e
(s

ec
./

10
ite

ra
tio

ns
)

FPGAs

TW full
torus
mesh
bus
linear

32

64

128

256

512

4 8 16 32

Ex
ec

ut
io

n
tim

e
(s

ec
./

1i
te

ra
tio

ns
)

FPGAs

YH full
torus
mesh
bus
linear

Figure 10: Scalability of ForeGraph.

We add a blue curve which provides a presumptive linear
speedup (blue) in Figure 10. Both torus (orange) and mesh
(gray) provide comparable performance to the full intercon-
nection scheme (green). The comparison results of blue and
green curves show that even the full interconnection cannot
provide linear speedup because of the unbalanced workload
of different FPGAs. Even so, ForeGraph scales well to the
multi-FPGA platform.

6.6 Comparison with State-of-the-art Systems
We compare ForeGraph with state-of-the-art systems in

Table 9. ForeGraph outperforms state-of-the-art systems
on both execution time and throughput. Experimental re-
sults show that ForeGraph achieves 4.54x∼5.04x speedup
to CPU-based systems and 8.07x speedup to the FPGA-
based system. Moreover, the throughput of ForeGraph is
1.41x∼2.65x larger than previous FPGA-based systems.

7. CONCLUSION
In this paper, we propose a large-scale graph process-

ing system, ForeGraph, based on the multi-FPGA architec-
ture. ForeGraph provides larger on-chip BRAMs size and
off-chip bandwidth which are essential to accelerate large-
scale graph processing. Partitioning and communication
scheme among FPGAs are also considered to ensure local-
ity and reduce conflicts. ForeGraph achieves 5.89x speedup

225

Table 9: Comparison between ForeGraph and state-of-the-art systems

Algorithm Graph Metric
ForeGraph Comparison system Improve-

mentPlatform Performance System Platform Performance

BFS TW execution time(s) 4 FPGAs 15.12 TurboGraph [13] CPU 76.134 5.04x
BFS TW execution time(s) 4 FPGAs 15.12 FPGP [18] 1 FPGA 121.99 8.07x
PR TW execution time(s) 4 FPGAs 7.921 PowerGraph [2] 512 CPUs 36 4.54x
BFS WK throughput(MTEPS) 1 FPGA 1069 Shijie’s work [23] 1 FPGA 657 1.41x
BFS - throughput(MTEPS) 4 FPGAs 1458 CyGraph [16] 4 FPGAs 550 2.65x

compared with state-of-the-art designs, and 2.03x average
throughput improvement compared with previous FPGA-
based systems. Using on-chip BRAMs with random access
feature is a promising way to accelerate large-scale graph
processing, but it is still limited by the size of BRAMs.
Both theoretical analysis and experimental results show that
larger BRAM size leads to better performance. In future,
it is reasonable to use FPGAs with more on-chip memory
resources (e.g. UltraRAM in Xilinx UltraScale+ [35], Altera
Stratix 10 using 3D-stacking technology [36], and etc.) to
achieve a superior performance.

8. ACKNOWLEDGMENT
This work was supported by National Natural Science

Foundation of China (No. 61373026, 61622403, 61261160501)
and Huawei Innovation Research Program (HIRP). We are
also thankful to reviewers for their helpful suggestions.

9. REFERENCES
[1] Graph 500. http://www.graph500.org/.
[2] Je Gonzalez, Y Low, and H Gu. Powergraph: Distributed

graph-parallel computation on natural graphs. In OSDI, pages
17–30, 2012.

[3] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel
Crankshaw, Michael J Franklin, and Ion Stoica. Graphx: Graph
processing in a distributed dataflow framework. In OSDI, pages
599–613, 2014.

[4] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi:
Large-Scale Graph Computation on Just a PC Disk-based
Graph Computation. In OSDI, pages 31–46, 2012.

[5] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos
Guestrin, Aapo Kyrola, and Joseph M Hellerstein. Distributed
graphlab: a framework for machine learning and data mining in
the cloud. VLDB Endowment, pages 716–727, 2012.

[6] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski.
Pregel: a system for large-scale graph processing. In SIGMOD,
pages 135–146. ACM, 2010.

[7] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong
Ma. Gemini: A computation-centric distributed graph
processing system. In OSDI, pages 301–316, 2016.

[8] Nadathur Satish, Narayanan Sundaram, Md Mostofa Ali
Patwary, Jiwon Seo, Jongsoo Park, M Amber Hassaan, Shubho
Sengupta, Zhaoming Yin, and Pradeep Dubey. Navigating the
maze of graph analytics frameworks using massive graph
datasets. In SIGMOD, pages 979–990. ACM, 2014.

[9] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A
lightweight infrastructure for graph analytics. In SOSP, pages
456–471. ACM, 2013.

[10] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li,
and Huazhong Yang. Nxgraph: An efficient graph processing
system on a single machine. In ICDE, pages 409–420, 2016.

[11] Xiaowei Zhu, Wentao Han, and Wenguang Chen. GridGraph :
Large-Scale Graph Processing on a Single Machine Using
2-Level Hierarchical Partitioning. In ATC, pages 375–386, 2015.

[12] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-stream: edge-centric graph processing using streaming
partitions. In SOSP, pages 472–488. ACM, 2013.

[13] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon
Lee, Min-Soo Kim, Jinha Kim, and Hwanjo Yu. Turbograph: a
fast parallel graph engine handling billion-scale graphs in a
single pc. In SIGKDD, pages 77–85. ACM, 2013.

[14] Farzad Khorasani. Scalable SIMD-Efficient Graph Processing
on GPUs. In PACT, pages 39–50. ACM, 2015.

[15] Duane Merrill, Michael Garland, and Andrew Grimshaw.
Scalable gpu graph traversal. In ACM SIGPLAN Notices,
pages 117–128. ACM, 2012.

[16] Osama G Attia, Tyler Johnson, Kevin Townsend, Philip Jones,
and Joseph Zambreno. Cygraph: A reconfigurable architecture
for parallel breadth-first search. In IPDPSW, pages 228–235.
IEEE, 2014.

[17] Brahim Betkaoui, Yu Wang, David B Thomas, and Wayne Luk.
A reconfigurable computing approach for efficient and scalable
parallel graph exploration. In ASAP, pages 8–15. IEEE, 2012.

[18] Guohao Dai, Yuze Chi, Yu Wang, and Huazhong Yang. Fpgp:
Graph processing framework on fpga a case study of
breadth-first search. In FPGA, pages 105–110. ACM, 2016.

[19] Nina Engelhardt and Hayden Kwok-Hay So. Gravf: A
vertex-centric distributed graph processing framework on fpgas.
In FPL, pages 403–406. IEEE, 2016.

[20] Nachiket Kapre, Nikil Mehta, Dominic Rizzo, Ian Eslick,
Raphael Rubin, Tomas E Uribe, F Thomas Jr, Andre DeHon,
et al. Graphstep: A system architecture for sparse-graph
algorithms. In FCCM, pages 143–151. IEEE, 2006.

[21] Eriko Nurvitadhi, Gabriel Weisz, Yu Wang, Skand Hurkat,
Marie Nguyen, James C Hoe, José F Mart́ınez, and Carlos
Guestrin. Graphgen: An fpga framework for vertex-centric
graph computation. In FCCM, pages 25–28. IEEE, 2014.

[22] Tayo Oguntebi and Kunle Olukotun. Graphops: A dataflow
library for graph analytics acceleration. In FPGA, pages
111–117. ACM, 2016.

[23] Shijie Zhou, Charalampos Chelmis, and Viktor K Prasanna.
High-throughput and energy-efficient graph processing on fpga.
In FCCM, pages 103–110. IEEE, 2016.

[24] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and
Kiyoung Choi. A scalable processing-in-memory accelerator for
parallel graph processing. In ISCA, pages 105–117. ACM, 2015.

[25] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and
Jonathan Berry. Challenges In Parallel Graph Processing.
Parallel Processing Letters, pages 5–20, 2007.

[26] Andrew Lenharth, Donald Nguyen, and Keshav Pingali.
Parallel graph analytics. Communications of the ACM,
59(5):78–87, 2016.

[27] Brahim Betkaoui, Yu Wang, David B Thomas, and Wayne Luk.
Parallel fpga-based all pairs shortest paths for sparse networks:
A human brain connectome case study. In FPL, pages 99–104.
IEEE, 2012.

[28] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek
Chiou, Kypros Constantinides, John Demme, Hadi
Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jan
Gray, et al. A reconfigurable fabric for accelerating large-scale
datacenter services. In ISCA, pages 13–24. IEEE, 2014.

[29] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon.
What is twitter, a social network or a news media? In WWW,
pages 591–600. ACM, 2010.

[30] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and David A
Bader. Scalable graph exploration on multicore processors. In
SC, pages 1–11. IEEE, 2010.

[31] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient
parallel graph exploration on multi-core cpu and gpu. In
PACT, pages 78–88. IEEE, 2011.

[32] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob.
Dramsim2: A cycle accurate memory system simulator. IEEE
Computer Architecture Letters, 10(1):16–19, 2011.

[33] Stanford large network dataset collection.
http://snap.stanford.edu/data/index.html#web.

[34] Yahoo! altavisata web page hyperlink connectivity graph, circa
2002. http://webscope.sandbox.yahoo.com/.

[35] https://www.xilinx.com/products/silicon-devices/fpga/
virtex-ultrascale-plus.html.

[36] https://www.altera.com/solutions/technology/
next-generation-technology/overview.html.

226

