
FPGP: Graph Processing Framework on FPGA
A Case Study of Breadth-First Search

Guohao Dai, Yuze Chi, Yu Wang, Huazhong Yang
Department of Electronic Engineering, Tsinghua University, Beijing, China

Tsinghua National Laboratory for Information Science and Technology
{dgh14, chiyz12}@mails.tsinghua.edu.cn, {yu-wang, yanghz}@mail.tsinghua.edu.cn

ABSTRACT
Large-scale graph processing is gaining increasing at-

tentions in many domains. Meanwhile, FPGA provides a
power-efficient and highly parallel platform for many ap-
plications, and has been applied to custom computing in
many domains. In this paper, we describe FPGP (FPGA
Graph Processing), a streamlined vertex-centric graph pro-
cessing framework on FPGA, based on the interval-shard
structure. FPGP is adaptable to different graph algorithms
and users do not need to change the whole implementation
on the FPGA. In our implementation, an on-chip parallel
graph processor is proposed to both maximize the off-chip
bandwidth of graph data and fully utilize the parallelism of
graph processing. Meanwhile, we analyze the performance
of FPGP and show the scalability of FPGP when the band-
width of data path increases. FPGP is more power-efficient
than single machine systems and scalable to larger graphs
compared with other FPGA-based graph systems.

Categories and Subject Descriptors
B.4.4 [Hardware]: Input/Output and Data Communica-
tions—Performance Analysis and Design Aids; E.1 [Data]:
Data Structure

Keywords
Large scale graph processing; FPGA framework

1. INTRODUCTION
We are living in a “big data” era with the great explo-

sion of data volume generated and collected from ubiqui-
tous sensors, portable devices and the Internet. However,
large graphs are generally hard to deal with. State-of-the-
art graph processing systems are generally limited by IO and
computation does not take a large part in the total execution
time. FPGA can handle the same computation task while
providing much better power-efficiency. Researchers have
proposed some dedicated solutions for certain algorithms[2,
3] and some generic solutions[11] on FPGA. The formers are
restricted to special applications whereas the latter cannot

This work was supported by 973 project 2013CB329000, National
Natural Science Foundation of China (No. 61373026, 61261160501),
the Importation and Development of High-Caliber Talents Project of
Beijing Municipal Institutions, Xilinx University Program, Huawei
Technologies Co., Ltd, and Tsinghua University Initiative Scientific
Research Program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA’16, February 21-23, 2016, Monterey, CA, USA
© 2016 ACM. ISBN 978-1-4503-3856-1/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2847263.2847339

scale to the order of millions because all vertices and edges
need to be stored on the FPGA board.

In this work, we present FPGP, a scalable graph pro-
cessing platform on FPGA that can handle billion-scale graphs
with a single FPGA board. Our main contributions are as
follows:

• Enable interval-shard based vertex-centric graph
processing on FPGA. Previous work on FPGA ei-
ther focuses on certain algorithm only, or supports
generic algorithms but limited to less than millions of
vertices due to the lack of FPGA resources. By cut-
ting vertices into small intervals and fitting them into
small on-chip memory while streaming edges from off-
board storage, FPGP can scale to graphs with billions
of vertices and even more edges.

• Analyze the performance bottleneck of generic
graph systems on FPGA. Under FPGP framework,
we analyze the impact factors of performance and give
an optimized strategy to achieve the maximum per-
formance. Given the analysis, we do a case study of
breadth-first search to demonstrate the system perfor-
mance model when the bandwidth varies.

The following of this paper is organized as follows. Sec-
tion 2 shows some related graph processing systems. Sec-
tion 3 describes some background ideas about graph compu-
tation tasks and introduces the algorithm. We then present
the FPGP framework in Section 4. Then, we model the per-
formance of the FPGP framework in Section 5. We demon-
strate and discuss some experimental results in Section 6.
Section 7 concludes the paper.

2. RELATED WORK
2.1 Single-machine CPU systems

GraphChi[10] is a disk-based single-machine system fol-
lowing the vertex-centric programming model. GraphChi
first introduces the concepts of intervals and shards. Graph-
Chi can handle billions of vertices and edges on a single PC.

TurboGraph[8] is another disk-based graph processing
system. It presents the pin-and-slide model to handle larger
graphs. Edges are managed as pages stored on disk and
are pinned into memory when necessary. VENUS[5] is more
friendly to hard disks. It introduces the Vertex-centric Stream-
lined Processing (VSP) model such that graph is loaded
in serial but updating kernel is executed in parallel. NX-
graph[6] divides edges into smaller sub-shards and sorts edges
within each sub-shard, achieving a better performance com-
pared with systems above.

All these systems use interval-shard structure to store
graphs, providing the locality of data accessing.

2.2 FPGA systems
Bondhugula et al. presents a parallel FPGA-based all-

pairs shortest paths solving system in [4]. This system is

105

Table 1: Notations of a graph

Notation Meaning
G the graph G = (V,E)
V vertices in G
E edges in G
n number of vertices in G, n = |V |
m number of edges in G, m = |E|
vi vertex i, or its associated attribute value
ei→j edge e from vi to vj
Ii interval i
Si shard i
SSi.j sub-shard i.j
P number of intervals
Bv (average) size of a vertex on disk
Be (average) size of an edge on disk

dedicated for Floyd-Warshall algorithm and is optimized so
that a maximum utilization of on-chip resources is achieved
while maximum parallelism is enabled. Betkaoui et al. in-
troduces an FPGA-based BFS solution with high efficiency
and scalability with optimization on memory access and
coarse-grained parallelism. However, neither of them can ad-
dress general graph computation problems. GraphGen[11] is
an FPGA-based generic graph processing system using the
vertex-centric model. However, GraphGen stores the whole
graph in the on-board DRAM, which significantly limits the
scalability of such a system.

3. PRELIMINARY
In this section, a detailed description of a graph compu-

tation task is given first, followed by a brief introduction of
graph presentation methodology. The algorithm in FPGP is
described in Section 3.3. The notations used in this section
is listed in Table 1.

3.1 Problem description
A graph G = (V,E) is composed of its vertices V and

edges E. A computation task on G will be updating values
on set V according to the adjacency information on set E.
By attaching a value to the <source, destination> pair of
each edge, FPGP is applicable to both weighted and un-
weighted graphs. The update function used in graph com-
putation is usually modeled as vertex-centric. In the vertex-
centric model, each vertex carries a mutable attribute value,
which can be updated by its in-neighbors during the execu-
tion stage. Graph algorithms are usually iterative.

3.2 Graph presentation
Many systems use intervals to store vertex attributes

and shards to store edges. Moreover, each shard can be
divided into sub-shards. All vertices of G = (V , E), or V ,
should be divided into P disjoint intervals I1, I2, ... , IP . All
edges of G, or E, should be divided into P disjoint shards
S1, S2, ... , SP . Each shard Sj is further partitioned into
P disjoint sub-shards SS1.j , SS2.j , ... , SSP.j . A sub-shard
SSi.j consists of all edges in E whose source vertex resides in
the interval Ii and destination vertex resides in the interval
Ij . This is shown in Figure 1.

3.3 Algorithm description on FPGP
FPGP adopts the updating strategy described in [6]

which supports both weighted and unweighted graphs. Up-
dates are performed in unit of intervals. Within each it-
eration of traversal, FPGP will iterate each interval as the
destination interval and perform updates upon it. For ex-
ample, in the graph presented in Figure 1, FPGP will first
choose I1 as the destination interval. To calculate the up-
dated I1, FPGP will first use SS1.1 and previous values in I1

0 1

2

34

5

(a) Example graph

S3S2S1

SS1.1

SS3.2

5 2
4,5 3

SS2.2

3 2

SS1.2

1 2
0,1 3

SS1.1

SS2.1

3 0
2,3 1

SS3.1

4 1

SS1.3

1 4
0 5

SS2.3

3 4
3 5

SS3.3

5 4
4 5

I1

0, 1
I2

2, 3
I3

4, 5

(b) Intervals and sub-shards

Figure 1: An example of intervals and sub-shards

to calculate incremental values to I1. After that, FPGP will
use SS2.1 and previous I2 to calculate another incremental
values. Then it’ll use SS3.1 and I3, ... , etc. When FPGP
finishes iteration over source intervals, it will accumulate all
the incremental values as well as optional initial values of I1.
In this way, all edges and vertices are effectively traversed
and updates are incrementally performed on the destination.

4. FPGP FRAMEWORK
4.1 Framework Overview

The overall framework of FPGP is shown in Figure 2.
The Processing Kernels(PKs) provides reconfigurable logic
for designers to implement graph updating kernel function
on the FPGA chip. On-chip cache stores a portion of graph
data using block RAMs(BRAMs) on FPGA, thus PKs can
access these data within one or two clock cycles in a random
access pattern. Data controller arranges edge or vertex data
from either the shared vertex data memory and the local
edge data storage. The shared vertex data memory stores
the vertex data and can be updated by each PK when ex-
ecuting the graph algorithm. Each local edge data storage
stores a portion of edges in the graph and feeds these data
for a slice of PKs.

4.2 Reconfigurable Processing Kernel
Designers can implement their own designs for different

graph algorithms on PKs. Both the input and output of
PKs are from on-chip block RAMs rather than the off-chip
memory, thus the long latency caused by the poor locality
of graph data is eliminated. Each PK receives an edge e
and extracts the value of its source vertex, then performs
the kernel() function to update the value for its destination
vertex, as shown in Formula (1).

e.dst.value = kernel(e.dst.value, e.src.value) (1)

4.3 On-chip Cache and Data Arrangement
FPGP provides a dedicated on-chip cache mechanism

for graph data and that ensures the locality when executing
the graph algorithm on a subset of a graph. As mentioned
in Section 3.2, vertices in the graph are divided into P in-
tervals and edges are divided into P 2 sub-shards. Updating
is performed in unit of sub-shards. When executing graph
algorithm on a sub-shard SSi.j , FPGP stores Ii and Ij in
the on-chip vertex read cache and vertex write cache, respec-
tively. The values of vertices in Ij are then updated using
the values of vertices in Ii while edges in SSi.j are loaded in
a streamlined way from external local edge storage. From
the perspective of intervals, Formula (1) can be modified
into Formula (2).

Ij = update(Ij , Ii, SSi.j) (2)

106

Figure 2: FPGP framework

Algorithm 1 Work flow of FPGP framework[10]

Input: G
Output: updated V in G = (V,E)
1: for j = 1 to P do
2: Load Ij ;
3: Load I1;
4: for i = 1 to P do
5: Ij = update(Ij , Ii, SSi.j);
6: if i �= P then
7: Load Ii+1;
8: end if
9: end for
10: Save Ij ;
11: end for

4.4 Updating Strategy
In the FPGP framework, two kinds of storage are in-

troduced, the shared vertex data memory and the local edge
data storage, vertices and edges are stored in them respec-
tively. When performing the vertex-centric updating, edges
in the local edge data storage are loaded to FPGA chip se-
quentially whereas vertices in the shared vertex data mem-
ory are manipulated by a controller. Observing that differ-
ent PKs can update different destination intervals (Ij , Ik,
etc.) using the same source interval Ii, Ii can be loaded
from the shared vertex data memory and issued to different
PKs without increasing the bandwidth requirement of the
shared vertex data memory. This storage arrangement and
updating strategy makes our FPGP framework scalable as
the size of graph increases.

The basic workflow of FPGP is shown in Algorithm 1.
FPGP executes the update fuction (Line 5 in Algorithm 1)
in a streamlined way, as shown in Algorithm 2.

5. PERFORMANCE ANALYSIS OF FPGP
5.1 FPGP Model

Consider the graph G = (V,E) where |V | = n, |E| = m.
The size of a vertex value is Bv and the size of an edge is
Be. The total space requirement for vertices and edges are
nBv and mBe, respectively. Assume all intervals have the
same size nBv

P
and all sub-shards have the same size mBe

P2 .
Here, P represents the number of intervals in the graph.

Two fundamental requirements for FPGP are that all
vertices in the graph can be stored in the shared vertex
memory and ping-pong operation can be performed, and
all local edge storage space is sufficient to store all edges
in the graph, which is shown in Formula (3) and Formula
(4). For example, in our FPGP implementation, we use on
board DRAM (∼GBytes) as shared vertex memory. Assum-
ing Bv = 4Bytes, FPGP can support graphs with millions
of vertices. Because edge data can be accessed via PCI-e,

Algorithm 2 Streamlined executing of update function

Input: Ii, Ij , SSi.j
Output: Ij
1: for e ∈ SSi.j do
2: e.dst.value = kernel(e.dst.value, e.src.value)
3: end for

Table 2: Notations of FPGP

Notation Meaning
Npk number of PKs on each FPGA chip
Nchip number of FPGA chips
Mbram size of available Block RAMs on each chip
Mv size of available shared vertex memory
Me size of available local edge storage
f frequency of FPGA
Tcal time spent on PKs
Tload.edge time spent on loading edges
Tload.vertex time spent on loading vertices
Texe time spent on the inner loop of Algorithm 1
Ttotal.exe total executing time of each iteration
BWshare bandwidth of the shared vertex memory
BWlocal bandwidth of each local edge storage

the local edge storage can be extended to several TBytes.

Mv > 2nBv (3)

Me > mBe (4)

5.2 Memory Size
Assuming the number of FPGA chips is Nchip and the

block RAM size of each chip is Mbram, we implement Npk

PKs on each FPGA chip. Each PK executes the kernel
function to update an Ij using the same Ii. Considering the
ping-pong interval (Ii and Ii+1) on the FPGA chip, the total
on-chip BRAM requirement is (Npk + 2)·nBv

P
, thus:

Mbram > (Npk + 2) · nBv

P
(5)

P 2 iterations are required and each FPGA chip executes

the update function P2

Nchip
times (Line 5 in Algorithm 1).

Assume each FPGA chip runs at the frequency of f , and the
bandwidth of local edge storage is sufficient to provide the
input tuple (e.dst, e.src), the executing time of calculating
the updated value of an interval is 1

f
· m

P2 . Note that the

PKs are required to be fully pipelined so that a new edge
can be issued every cycle. Thus, the total executing time of
calculating the updated value of all vertices V , namely Tcal,
is shown in Formula (6).

Tcal =
1

f
· m

P 2
· P 2

Nchip
· 1

Npk
=

m

NchipNpkf
(6)

Assuming the total time of loading all edges in a lo-
cal edge storage is Tload.edge, Formula (6) is valid when
Tload.edge < Tcal. Furthermore, note that calculating the
updated value of Ij (Line 5 in Algorithm 1) and loading
Ii+1 are executed concurrently, the total executing time of
the inner loop (Line 5 to 8), namely Texe, is

Texe = max(Tcal, Tload.edge, Tload.vertex) (7)

Formula (7) shows that the total executing time of the
inner loop of Algorithm 1 equals to the largest value among
Tcal, Tload.vertex and Tload.edge. The latter two are closely
related to the bandwidth of memory in FPGP, which will be
analyzed in Section 5.3.

107

5.3 Bandwidth
Based on the analysis above, we will show how memory

bandwidth affects the performance of FPGP in this section.
Assume the bandwidth of the local edge storage is BWlocal,
we can get Formula (8):

Tload.edge =
mBe

NchipBWlocal
(8)

As illustrated in Figure 2, all FPGA chips can access
the shared vertex memory, leading to a decrease on the ef-
fective bandwidth when the number of FPGA chip Nchip

becomes larger. However, noticing that we can update dif-
ferent intervals (Ij , Ik, etc.) with the same interval Ii, we
can synchronize all FPGA chips before loading an interval.
This is shown in Algorithm 3 (Line 3 and Line 8).

Algorithm 3 Work flow of FPGP framework with synchro-
nization
Input: G
Output: updated V in G = (V,E)
1: for j = 1 to P do
2: Load Ij ;
3: SyncAndIssue();
4: Load I1;
5: for i = 1 to P do
6: for each chip do in parallel
7: Ij = update(Ij , Ii, SSi.j);
8: end for
9: if i �= P then
10: SyncAndIssue();
11: Load Ii+1;
12: end if
13: end for
14: Save Ij ;
15: end for

We can get Tload.vertex according to Formula (9), as-
suming the bandwidth of the shared vertex memory isBWshare.

Tload.vertex =
P

Nchip
· P · nBv

P
· 1

BWshare
=

PnBv

NchipBWshare

(9)
Note that according to Formula (5), the lower bound of

P is
(Npk+2)nBv

Mbram
. To minimize Tload.vertex so that Texe can

be minimized, we substitute P with its lower bound. Thus,
Formula (7) can be derived into Formula (10):

Texe = max(
m

NchipNpkf
,

mBe

NchipBWlocal
,

(Npk + 2)(nBv)
2

MbramNchipBWshare
)

(10)
Formula (10) shows the executing time of inner loop

in Algorithm 3. The total executing time of one iteration,
Ttotal.exe, is

Ttotal.exe = Texe +
2nBv

BWshare
(11)

The extra item 2nBv
BWshare

is added because we need to

read the new destination interval from the shared vertex
memory and write the updated destination interval to the
shared vertex memory before changing the subscript j in
Algorithm 1 or 3.

5.4 Performance Summary
Implementing more PKs on one FPGA chip may not

lead to better performance because larger Npk leads to an
increase in the total number of loops, as illustrated in For-
mula (5). Formula (10) shows that the first item of Texe is in-
versely proportional to Npk, while the other two is constant

(a) Topt < Tload.edge (b) Topt > Tload.edge

Figure 3: Solution space: when the bandwidth of the
local edge storage increases and Tload.edge decreases,
the bottleneck turns into on-board processing from
off-board data accessing

and proportional to Npk, respectively. Assuming (Ncross,
Tcross) is the crossover point of Tcal and Tload.vertex as Npk

varies, we can derive that

Ncross =

√
1 +

mMbramBWshare

f(nBv)2
− 1 (12)

Tcross =
(nBv)

2

MbramNchipBWshare
(

√
1 +

mMbramBWshare

f(nBv)2
+1)

(13)
We can also get Nmin, the crossover points of Tcal and

Tload.edge, and Nmax, the crossover points of Tload.vertex and
Tload.edge. Note that Nmin < Nmax if and only if Tcross <
Tload.edge.

Nmin =
BWlocal

fBe
(14)

Nmax =
mBeBWshareMbram

(nBv)2BWlocal
− 2 (15)

We can see that Tcross reflects the best performance
that on-board resources (FPGA chip, DRAM) can provide,
while Tload.edge only depends on off-board resources (PCI-e
bandwidth). Thus, in Figure 3, when Tcross < Tload.edge,
the system gets the best performance as Nmin < Npk <
Nmax, and Texe = Tload.edge. In this situation, the local
edge storage becomes the bottleneck, and the bandwidth
of the local edge storage is not sufficient to provide data
for processing. When Tcross > Tload.edge, the system gets
the best performance as Npk = Ncross, and Texe = Tcross.
In this situation, the bandwidth of the local edge storage is
sufficient to provide data for processing, and a largerNpk can
lead to a higher degree of parallelism but also increase the
times of replacing on-chip intervals, thus the whole system
reaches the best performance when Npk gets the optimal
point.

6. EXPERIMENTAL RESULTS
In this section, we will introduce a slice of experimental

results of our FPGP framework on real-world graphs. We
test the system performance and compare the results with
the performance analysis in Section 5. We also compare the
executing time of FPGP on real-world graphs with state-of-
the-art systems.

6.1 Implementation: A case study of BFS
In this section, we implement the BFS under the FPGP

framework. Although BFS does not involve much compu-
tation, we can extended the results to more complicated al-
gorithms. In FPGP, data are streamlined loaded to FPGA

108

chip so pipeline is applicable for complicated algorithms. We
use one Xilinx Virtex-7 FPGA VC707 Evaluation Kit and
choose Npk = 2 in the implementation (Figure 4). Thus, 4
interval caches are on the chip, including a ping-pong inter-
val cache (Ii and Ii+1), and one result interval Ij for each
PK.

In our implementation, we use a FIFO between the local
edge storage and on-chip logic. By introducing the FIFO,
the FPGP is capable of decoding the compressed sparse for-
mat used in the sub-shards. The updating results of Ij from
two BFS kernels will be merged before written back to the
shared vertex memory.

6.2 Experimental Setup
To test the performance of breadth-first search in the

FPGP framework, we implement the breadth-first search
algorithm according to the detailed implementation in Sec-
tion 6.1. We choose Xilinx Virtex-7 FPGA VC707 Evalu-
ation Kit as our FPGA prototype, and the FPGA chip is
XC7VX485T-2FFG1761. The VC707 Evaluation Kit has an
x8 PCI-e Gen2 interface to a host PC and a 1GB on-board
DDR3 memory. Our implementation of FPGP on VC707
runs at the frequency of 100MHz. A personal computer is
equipped with a hexa-core Intel i7 CPU running at 3.3GHz,
eight 8 GB DDR4 memory and a 1 TB HDD. The computer
is used to execute GraphChi as a comparison to FPGP, and
we choose the Twitter[9] graph (42 millions of vertices and
1.4 billions of edges) and the YahooWeb[7] graph (1.4 bil-
lions of vertices and 6.6 billions of edges) as the benchmark.

6.3 System Performance
In this experiment, we compare the FPGP to GraphChi

on the Twitter graph when performing the breadth-first
search. GraphChi is a disk-based single-machine system fol-
lowing the vertex-centric programming model. It presents
the interval-shard based graph computation model for the
first time and many other graph processing systems improve
the performance based on GraphChi.

There are 37.08 Mbits BRAM resources in total on
the XC7VX485T-2FFG1761 chip, we use 90% of these re-
sources. However, only about 1% LUTs are used. Although
LUTs can be used as on-chip memory, it can only provide
about 20% extra on-chip memory resources compared with
BRAMs, which may not provide significant improvement.
Meanwhile, LUTs can be used for other logics in our fur-
ther implementation to improve the performance of FPGP.
Npk = 2 in our implementation and thus there are 4 interval
caches on the FPGA chip, each has the size of 1MBytes, and
the resource cost of our FPGP implementation is shown in
Table 3.

Table 3: Resource utilization of BFS
Resource Utilization Available Utilization%

FF 610 607200 0.10
LUT 4399 303600 1.45

BRAM 928 1030 90.09
BUFG 1 32 3.13

As shown in Table 3, the bottleneck of our FPGP im-
plementation is the total block RAM resources on one chip.
We simulate the performance of FPGP when BWshare = 6.4
GB/s and BWlocal = 0.8 GB/s. The executing time on
Twitter[9] graph of FPGP is 121.992s (13 iterations), while
it takes 148.557s on GraphChi and 76.134s on TurboGraph.

Table 4: Executing time of BFS on Twitter
System GraphChi Turbograph FPGP
Time(s) 148.557 76.134 121.992

As we can see, FPGP achieves 1.22x speedup to GraphChi
when BWshare = 6.4 GB/s and BWlocal = 0.8 GB/s. Note
that the VC707 Evaluation Kit can provide up to 12.8 GB/s

of BWshare (by using DDR3 on the board) and up to 2 GB/s
of BWlocal (by using PCI-e). Meanwhile, our FPGP system
requires less power that the CPU system.

We also test the performance on YahooWeb graph[7],
which consists of 1.4 billions of vertices and 6.6 billions of
edges. It takes 635.44s on FPGP while takes 2451.62s on
GraphChi, thus FPGP achieves 3.86x speedup to GraphChi.
FPGP is scalable to graphs with billions of vertices.

6.4 Bandwidth
As analyzed in Section 5, both bandwidth and memory

size have influence on the whole system performance. To
get the best performance of FPGP, we almost use all of on-
chip BRAM resources and do not change the BRAM size
by implementing FPGP on different FPGA chips. The size
of DRAM on VC707 board and off-board DRAM via PCI-
e is able to meet Formula (3) and Formula (4). Thus in
our experiment we just change the bandwidth, BWlocal and
BWshare.

Because the data access pattern is organized into a
streamlined way in FPGP, we can use the simulated results
to demonstrate the actual bandwidth of actual implemen-
tation. According to the analysis in Section 5.4, both the
bandwidth of the shared vertex memory and local edge mem-
ory influence the system performance. Simply improve the
bandwidth of either of them will approach a bottleneck when
the bandwidth of another is limited. In this section, we sim-
ulate the performance of FPGP when the bandwidth of local
edge storage and shared vertex memory varies. We choose
Npk = 2 and the FPGP runs at the frequency of 100 MHz.

BWshare. We vary the BWshare from 0.4 GB/s to 51.2
GB/s, and BWlocal = 0.4 GB/s and 0.8 GB/s respectively.
We test the executing time of FPGP when performing the
BFS algorithm per iteration, and the result is shown in Fig-
ure 5. As we can see, the performance of FPGP will hardly
be improved when BWshare is more than 12.8 GB/s, for
BWlocal has become the bottleneck in this situation.

BWshare(GB/s)
0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2

T ex
ec

ut
in

g(s
)

0

20

40

60

80
BWlocal = 0.8GB/s

BWlocal = 0.4GB/s

Figure 5: Performance when BWshare varies

BWlocal. The local edge storage typically requires a
memory space about 10 to 100 GB to store part of edges in
a graph and can be carried out by using disk or via PCI-e.
The typical bandwidth of these devices is about 0.5 GB/s.
Thus, we simulate the performance of FPGP by varying the
BWlocal from 0.1 GB/s to 0.8 GB/s. The result is shown
in Figure 6. When BWlocal increases, the Tload.edge line in
Figure 3 continuously decline and the situation changes from
Figure 3(a) to Figure 3(b). However, due to the platform
limitation, we cannot get a larger bandwidth than ∼GBytes
via PCI-e, the real situation of our FPGP implementation
is more corresponding to Figure 3(a). Thus, improving the
bandwidth of local edge storage will enhance the perfor-
mance of FPGP markedly compared with improving the
bandwidth of shared vertex memory, which can be inferred
from our experiment results in Figure 6.

109

BWlocal BWshare

Figure 4: Detailed implementation of Breadth-First Search in FPGP

BWlocal(GB/s)
0.1 0.2 0.4 0.8

T ex
ec

ut
in

g(s
)

0

10

20

30

40

50

60

70
BWshare = 12.8GB/s

BWshare = 6.4GB/s

BWshare = 3.2GB/s

Figure 6: Performance when BWlocal varies

6.5 Discussion
FPGP provides a framework for implementing different

graph algorithms on FPGA. Compared with state-of-the-
art CPU-based systems, such as TurboGraph[8] and NX-
graph[6], FPGP doesn’t achieve better performance on cur-
rent FPGA chips.

We compare an Intel Haswell architecture CPU (i7-
4770) with our Xilinx XC7VX485T-2FFG1761. The i7-4770
has 4 cores and a 256KBytes L2 cache for each core, each
core runs at 3.4GHz and the latency of fetch data in the L2
cache is around 10 cycles, thus each core is equivalently run-
ning at around 300MHz when fetching data in L2 cache. In
our implementation, we have 2 PKs and each PK is attached
with a 1MBytes BRAM, running at 100MHz. State-of-the
art systems use more powerful CPUs which have more cores,
larger L2 cache size, and run at a higher frequency. Mean-
while, CPU systems store edge data in the main memory
and have larger bandwidth compared with the PCI-e imple-
mentation in FPGP.

As analyzed above, to improve the performance of FPGP,
one way is to improve the bandwidth of both shared vertex
memory and local edge storage. However, current implemen-
tation uses PCI-e to access edge data and on-board DRAM
to access vertex data, FPGP is not as competitive as CPU
systems. Thus, using FPGAs with larger on-chip memory
becomes a possible way. Larger on-chip memory can pro-
vide a higher degree of parallelism. Meanwhile, it can also
enlarger the interval size on the FPGA chip, so that the
number of intervals can be reduced and the times of replac-
ing intervals can be lowered.

A recent work[1] shows that in-memory-computing is
effective to improve the performance of graph processing.
“By putting computation units inside main memory, total
memory bandwidth for the computation units scales well
with the increase in memory capacity.”[1] Thus, allocating
more memory resources to each graph processing unit is im-
portant for improving performance of graph processing, the
point of view corresponds to our conclusion that an FPGA
chip with lager on-chip memory resources can lead to a bet-
ter performance in FPGP.

7. CONCLUSION
In this paper, we present an power-efficient large-scale

interval-shard based graph processing framework based on
FPGA, FPGP, which can handle generic graph algorithms
on graphs with billions of edges in several seconds. Mean-
while, we model the performance of FPGP and analyze the
bottleneck on a specific hardware platform. In our future
work, we will support more graph algorithms under the
FPGP framework.

8. REFERENCES
[1] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A

scalable processing-in-memory accelerator for parallel
graph processing. In ISCA, pages 105–117, 2015.

[2] B. Betkaoui, D. B. Thomas, W. Luk, and N. Przulj. A
framework for FPGA acceleration of large graph
problems: Graphlet counting case study. In FPT,
pages 1–8, 2011.

[3] B. Betkaoui, Y. Wang, D. B. Thomas, and W. Luk. A
reconfigurable computing approach for efficient and
scalable parallel graph exploration. In ASAP, pages
8–15, 2012.

[4] U. Bondhugula, A. Devulapalli, J. Fernando,
P. Wyckoff, and P. Sadayappan. Parallel fpga-based
all-pairs shortest-paths in a directed graph. In IPDPS,
pages 112–121, 2006.

[5] J. Cheng, Q. Liu, Z. Li, W. Fan, J. C. S. Lui, and
C. He. Venus : Vertex-centric streamlined graph
computation on a single pc. In ICDE, pages
1131–1142, 2015.

[6] Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang.
Nxgraph: An efficient graph processing system on a
single machine. arXiv preprint arXiv:1510.06916,
2015.

[7] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer.
The yahoo! music dataset and kdd-cup’11. In KDD
Cup, pages 8–18, 2012.

[8] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim,
J. Kim, and H. Yu. Turbograph: A fast parallel graph
engine handling billion-scale graphs in a single pc. In
SIGKDD, page 77, 2013.

[9] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In IW3C2,
pages 1–10, 2010.

[10] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc disk-based
graph computation. In OSDI, pages 31–46, 2012.

[11] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat,
M. Nguyen, J. C. Hoe, J. F. Mart́ınez, and
C. Guestrin. Graphgen: An fpga framework for
vertex-centric graph computation. In FCCM, pages
25–28, 2014.

110

