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Abstract—In recent years, there has been increasing adoption
of FPGAs in datacenters as hardware accelerators, where a
large population of end users are software developers. While
high-level synthesis (HLS) facilitates software programming, it
is still challenging to scale large accelerator designs on modern
datacenter FPGAs that often consist of multiple dies and memory
banks. More specifically, routing congestion and extra delays
on these multi-die FPGAs often cause timing closure issues and
severe frequency degradation at the physical design level, which
are difficult to digest and optimize for high-level programmers
using HLS. One promising approach to mitigate such issues
is to develop a high-level task-parallel programming model
with HLS and physical design co-optimization. Unfortunately,
existing studies only support a programming model where tasks
communicate with each other via FIFOs, while many applications
are not streaming friendly and many existing accelerator designs
heavily rely on buffer based communication between tasks.

In this paper, we take a step further to support a task-parallel
programming model where tasks can communicate via both
FIFOs and buffers. To achieve this goal, we design and implement
the PASTA framework, which takes a large task-parallel HLS
design as input and automatically generates a high-frequency
FPGA accelerator via HLS and physical design co-optimization.
First, we design a decoupled latency-insensitive buffer channel
that supports memory partitioning and ping-pong buffering,
which is compatible with the vendor Vitis HLS compiler. In the
frontend, we develop an easy-to-use programming interface to
allow end users to use our buffer channel in their applications. In
the backend, we provide automatic coarse-grained floorplanning
and pipelining for designs that use our proposed buffer channel.
We test PASTA on a set of task-parallel HLS designs that use
buffers for task communication and show an average of 36% (up
to 54%) frequency improvement for large design configurations.

I. INTRODUCTION

In the past few years, there is a growing interest in adopting
FPGAs in datacenters as hardware accelerators, due to their
low power, high flexibility, performance and energy efficiency.
Indeed, two major FPGA vendors, Altera and Xilinx, have
been recently acquired by two major server CPU vendors, Intel
and AMD [1], [2]. Moreover, major cloud service providers,
such as AWS [3], Microsoft Azure [4] and Alibaba Cloud
[5], have all started providing computing instances equipped
with FPGAs. Since a large population of datacenter users
are software developers, it is important to make software-
oriented programming on datacenter FPGAs easy and efficient.
While the continuous development of high-level synthesis
(HLS) facilitates FPGA programming by software developers,
it is still nontrivial to develop efficient large-scale accelerator
designs on modern multi-die FPGAs in datacenters.

Specifically, modern datacenter FPGAs consist of a plethora
of resources, including multiple DDR and/or HBM (high-
bandwidth memory) banks and multiple dies connected via
silicon interposers [6]. Furthermore, they often consist of IP
cores with fixed locations, such as the Vitis platform region,
PCIe and the HBM system, which consume a lot of resources
around them and redirect nearby paths to take much longer
routes [7]. When HLS designs are scaled up on these FPGAs
to best utilize the available resources, they often encounter
timing closure issues and experience severe clock frequency
degradation, due to routing congestion and extra delays. Even
worse, these issues happen at the physical design layer and are
thus challenging for HLS programmers to digest and optimize.

One of the promising directions to address such problems
is via HLS and physical design co-optimization: a user still
programs FPGA accelerators in a high-level language and
(implicitly or explicitly) passes metadata to the backend tool,
while the backend tool automatically applies floorplanning and
timing optimizations based on the metadata. For example,
a recent study, TAPA/AutoBridge [7] [8], made an initial
attempt to successfully mitigate these timing closure issues
in a task-parallel HLS programming model where parallel
tasks only communicate via latency-insensitive FIFO channels.
The latency-insensitive nature of the communication channels
allows the tool to automatically spread up the tasks across
multiple small FPGA regions to alleviate local routing conges-
tion and pipeline global communication wires between tasks to
avoid long critical paths. Unfortunately, existing studies [7] [8]
only support a task-parallel programming model where tasks
can only communicate via latency-insensitive FIFO channels.
However, a lot of applications are not friendly for streaming
and a lot of existing FPGA accelerator designs heavily rely
on on-chip buffer based communication (often via ping-pong
buffering) [9] [10] [11] [12] [13].

In this paper, we take a step further and develop the
PASTA framework to support a more general task-parallel
HLS programming model where tasks can communicate with
each other via both FIFO and buffer based latency-insensitive
channels. PASTA takes a large-scale task-parallel HLS pro-
gram as input and automatically generates a high-frequency
and high-performance accelerator design on modern multi-die
FPGAs via HLS and physical design co-optimization.

To support buffer based communication between tasks, we
have to address the following new challenges. 1) We need to
design a latency-insensitive buffer communication channel that
is decoupled from tasks (i.e., producer and consumer hardware



modules), so that we can easily extract metadata about the
tasks and (buffer) communication channels from the input
HLS program and then apply coarse-grained floorplanning and
pipelining optimizations in the physical design. 2) This buffer
channel needs to support the ping-pong buffering feature to
allow its producer and consumer tasks with separate finite state
machines (FSMs) to concurrently write and read the buffer
sections in a dataflow fashion. 3) It also needs to support
multidimensional arrays with memory partitioning schemes
such as cyclic, block and complete that are required by loop
pipelining and unrolling optimizations in its producer and
consumer tasks. 4) The I/O protocol of this buffer channel
needs to be compatible with vendor HLS tools so that the HLS-
based producer and consumer tasks can seamlessly interface
with it. 5) All the above requirements would make the buffer
channel design cumbersome to use. Therefore, we need to
develop an easy-to-use programming interface for end users
and automate the program transformations in the frontend tool.
6) We need to properly apply coarse-grained floorplanning and
pipelining in the backend tool for task-parallel HLS programs
that use our buffer communication channel, which would need
automatic tuning and recompilation of the producer/consumer
tasks due to the added pipelining latencies.

To address the above challenges, in PASTA, we first design
a buffer channel abstraction that is latency-insensitive and
decoupled from producer and consumer tasks, supports ping-
pong buffering and memory partitioning, and is compatible
with vendor Vitis HLS tool. This buffer channel includes
1) dual-port partitioned memory cores that store the actual
data of each buffer section, 2) a free sections FIFO, which
stores the tokens representing buffer sections that contain no
valid data and are free to be written to by the producer task,
and 3) an occupied sections FIFO, which stores the tokens
representing buffer sections that contain valid data and are
ready to be read by the consumer task. The producer and
consumer tasks control the access of the buffer channel via the
latency-insensitive token exchange. The memory cores use the
ap_memory protocol and the FIFOs use the ap_fifo protocol,
which are supported by Vitis HLS.

In the frontend, we design an easy-to-use programming in-
terface where users can easily 1) customize a buffer channel’s
data type, number of ping-pong sections, memory partitioning
scheme, and memory core type, using C++ templates, and
2) use the declared buffer channel in producer and consumer
tasks using the C++ Resource Acquisition Is Initialization
(RAII) idiom that automatically takes care of the cumbersome
procedure calls and data dependency issue happening under
the hood. Our frontend tool automatically extracts the task
graph with the aforementioned task communication metadata,
and transforms the code of the producer and consumer tasks
that use our buffer interface to be synthesized by Vitis HLS.

At the backend, based on the extracted metadata, we first
instantiate the buffer channels on hardware. Then, we apply
coarse-grained floorplanning [7] to place the tasks and buffer
channels into local FPGA regions to alleviate local routing
congestion. Since reading from a memory core is more sen-

sitive to the added pipelining latency, we place the buffer
channel on the consumer task side. Finally, we add pipeline
registers between the producer task and the buffer channel as
they are placed in different regions. Unlike FIFO channels
that automatically check for fullness and emptiness, the buffer
channel (i.e., its memory cores) has no such mechanism: the
added latency for the producer task to read the buffer (at
times) would cause correctness issues. Therefore, we need to
automatically modify the producer task code with the updated
buffer access latency and invoke Vitis HLS to recompile it.

We test our PASTA tool on a set of benchmarks derived
from Rodinia-HLS [9] and achieve an average of 36% (up
to 54%) frequency improvement on AMD/Xilinx HBM-based
Alveo U280 FPGA board. Moreover, we confirm with on-
board execution tests that our improvements in frequency
indeed translate to a similar execution time speedup.

In summary, this paper makes the following contributions:
1. Analysis of challenges and design of latency-insensitive

buffer channel abstraction to support scalable task-parallel
HLS programs where tasks communicate via buffers.

2. PASTA, an end-to-end programming and automation frame-
work that supports scalable task-parallel HLS programs on
modern multi-die FPGAs, where tasks can communicate
with each other via both FIFOs and buffers.

3. Experimental results to demonstrate superior frequency and
performance improvements using PASTA.

II. BACKGROUND AND MOTIVATION

A. Modern Multi-Die FPGAs and Programming Challenge

To increase the amount of on-chip resources, modern dat-
acenter FPGAs are often made with multiple dies connected
via silicon interposers [6]. For example, Fig. 1(a) shows an
overview of the AMD/Xilinx HBM-based Alveo U280 FPGA
board. It consists of three super logic regions (SLRs, i.e., dies)
that are connected via SLR crossings, which carry additional
latencies. In addition, it often consists of IP cores with fixed
locations, such as the HBM memory system, IO banks, and
the Vitis platform region, shown in Fig. 1(a). These IP cores
consume a lot of resources around them and would redirect
nearby paths to take much more expensive routes [7].

As a result, for large-scale HLS designs on such multi-die
FPGAs, the routing congestion and extra delays often cause
timing closure issues and severe clock frequency degradation.
As will be presented in Section VII-C, for a wide range of HLS
designs that use 8 or more processing elements (PEs), their
achieved clock frequency is between 150MHz and 200MHz,
even though the target frequency is set to 300 MHz. To
better understand the impact of such frequency degradation,
assuming an FPGA accelerator design could achieve 60×
speedup over its CPU baseline if it ran at 300MHz, now it
could only achieve 30× to 40× speedup when running at
150MHz and 200MHz. Even worse, due to the gap between
HLS design and physical design, it is challenging for HLS
programmers to analyze and identify the root causes, and fix
their HLS design to achieve better timing closure.
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Fig. 1. Device overview of Alveo U280 FPGA and its slot representation.

Next, we present a high-level overview of the task-parallel
HLS programming model and its floorplanning optimiza-
tion [7], [8], as well as its limitation that motivates our work.

B. Task-Parallel Model and Motivational Example

In a task-parallel programming model, a program consists
of a set of tasks that run in parallel and/or in dataflow
and exchange data via FIFO or buffer based communication
channels. Generally, a FIFO channel is used when data need to
be sent and received in a pre-determined streaming fashion. In
contrast, a buffer based channel allows random memory access
from both producer and consumer sides. Moreover, a buffer
based channel also enables partitioned parallel memory access
and easier programming. Hence, it is common to see existing
applications heavily rely on buffering. Fig. 2 shows a task-
parallel implementation of the Pathfinder algorithm [14]. It is
a dynamic programming based algorithm that finds a path on
a 2D grid from the bottom of the grid to the top with the least
accumulated weight. This algorithm iterates from the bottom
most row to the top most row, and increases each point’s
weight by a function of the three points directly below it,
as illustrated in Fig. 2(b).

To scale the accelerator design using task parallelism, as
shown in Fig. 2(c), it divides the input grid into three parts,
one for each PE (processing element). Fig. 2(a) shows its task
graph, which consists of three load tasks, three compute tasks
(named PEs), and one merge task. The load task loads tiles of
data from off-chip memory one by one and outputs them via a
buffer channel. This data is received by the PEs and processed
row by row. Before processing each row, bordering data is sent
to and received from the neighboring PEs via FIFO channels.
Once all the PEs are done processing their part of the grid, the
top most rows are sent to the merge task via another buffer
channel. These last rows are received by the merge task, the
solution is computed and written to off-chip memory.

In this motivational example, tasks communicate with each
other via both FIFO channels and buffer channels.

C. Floorplanning for Task-Parallel HLS Programs

For a task-parallel HLS program, we can extract its ac-
tual tasks and distribute the tasks across multiple small
FPGA regions for local placement and routing optimizations.
Meanwhile, we can also extract the communication channels
between tasks for global routing optimization by inserting
pipeline registers for global long wires. There are two key
requirements behind this idea. First, we need a task-parallel
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Fig. 2. Motivational example Pathfinder in task-parallel model: (a) task graph,
(b) computation pattern of each point, (c) input 2D grid with partition for PEs.

programming model that decouples the actual tasks and com-
munication channels, so that they can be easily extracted from
the user HLS program. Second, the communication channel
needs to be latency insensitive, so that we can add pipeline
registers between this channel and its producer/consumer task.

Unfortunately, it is often nontrivial to develop a task-
parallel program in vendor HLS that satisfies the above two
requirements, especially when tasks communicate with each
other via buffer channels. In vendor HLS, the declaration
of communication channels (e.g., the declaration of ping-
pong buffers with memory partitioning) and the usage of
communication channels in producer and consumer tasks (e.g.,
the reads and writes of those partitioned ping-pong buffers) are
often mingled together and hard to extract out. In addition,
due to the programming style, the access of communication
channels is often latency sensitive: adding extra latencies to a
buffer channel access may cause correctness issues.

The recent TAPA/AutoBridge work [7], [8] has made a
successful attempt. It uses a task-parallel HLS program-
ming model that decouples the actual tasks and the latency-
insensitive FIFO communication channels between tasks,
which is compatible with Vitis HLS. After extracting the tasks
and FIFO communication channels, it applies coarse-grained
floorplanning and pipelining to improve the design frequency.
Basically, it models a multi-die FPGA device as a grid of
local slots based on the SLR boundaries and IP core locations:
Fig. 1(b) shows an example of six slots for the Alveo U280
FPGA. Then, it formulates an integer linear programming
(ILP) based algorithm to find a mapping of tasks to the local
FPGA slots, such that wires crossing slots are minimized and
the resource consumption within slots is kept within certain
limits. As directed by the output of the algorithm, FIFOs
that cross slot boundaries are pipelined (Fig. 1(b)). And the
algorithm’s output mapping is used to give constraints to the
vendor implementation tool (i.e., Vivado).

D. Limitation of Existing Work

While TAPA/AutoBridge [7], [8] shows promising results
of HLS and physical design co-optimization for large-scale
accelerator designs on modern multi-die FPGAs, it is limited
to task-parallel HLS programs in which tasks communicate
via FIFOs only. However, a lot of applications do not have
streaming friendly computation patterns and many existing



void vadd(…) {…}
void top(…) {

channel<type_t> a;
channel<type_t> b;
channel<type_t> c;
task()

.invoke(load, a, …)

.invoke(load, b, …)

.invoke(vadd, a, b, c)

.invoke(store, c, …)
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Fig. 3. An overview of our PASTA toolflow and our new contributions.

accelerator designs heavily rely on on-chip buffer based com-
munication (often via ping-pong buffering) [9] [10] [11] [12]
[13]. Moreover, some applications require both FIFO and
buffer based communication channels, such as the Pathfinder
example explained in Section II-B.

III. OVERVIEW OF PASTA

In this work, our goal is to build an end-to-end programming
and automation framework (called PASTA) that supports scal-
able task-parallel HLS programs on modern multi-die FPGAs,
where tasks can communicate with each other via both FIFO
and buffer based latency-insensitive communication channels.
We build PASTA based on the open source TAPA/AutoBridge
framework [7], [8] and focus on addressing the new challenges
listed in Section I to enable buffer based communication.

A. Overall PASTA Toolfow

Fig. 3 shows the complete flow of our framework PASTA. A
user writes their programs using a task-parallel HLS program-
ming model which consists of parallel tasks that communicate
via FIFOs and/or buffers. We will present more details on the
frontend programming interface in Section V.

First, our parser goes through the input program and extracts
all the task definitions (i.e., source code), buffer and FIFO
declarations (including their metadata, such as width and depth
of FIFO, size of the buffers, number of buffer dimensions, data
type, and partition scheme) and constructs a task graph. The
extracted task definitions are then transformed by our parser
to generate the right interfaces. Second, each (transformed)
task is compiled to RTL via Vitis HLS in parallel. Third,
the generated RTL modules are synthesized via Vivado in
parallel to get accurate resource consumption reports. Fourth,
the resource reports and the task graph with its metadata are
used by our high-level floorplanner to find a mapping of tasks
to FPGA slots (based on input board layout information), such
that the number of wires crossing SLRs is minimized and
the resource utilization per slot is kept within certain limits.
Based on this mapping, global channels of both FIFOs and
buffers are pipelined. It may have a back loop to update the
transformed HLS tasks to ensure the correctness after the
pipelining step. Fifth, both global and local channels are then
instantiated and stitched together with the tasks’ RTL modules
by our RTL stitcher. The final design is packed into an XO
file and a constraint file is separately generated to capture
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the placement constraints given by our floorplanner. Finally,
Vivado is invoked with these two files to perform placement
and routing and generate the final design (i.e., xclbin file).

B. Our Contributions

In PASTA, we present the following new contributions.
First, we design a buffer channel abstraction (Section IV)
that is latency-insensitive and decoupled from producer and
consumer tasks, supports ping-pong buffering and memory
partitioning, and is compatible with the vendor Vitis HLS tool.
Second, we design an easy-to-use programming interface to
use our buffer channels and its corresponding frontend parser
(Section V). Third, we implement a backend tool (Section VI)
to automatically and appropriately place and pipeline the
global buffer channels to improve the timing closure.

IV. BUFFER CHANNEL ABSTRACTION

A. Overall Buffer Channel Design

Our proposed buffer channel design is shown in Fig. 4. It
includes 1) a free sections FIFO, 2) an occupied sections FIFO,
and 3) multiple dual-port memory cores to support memory
partitioning, where each memory core consists of multiple
sections to support ping-pong buffering. The producer task
connects with each memory core via one of its ports, while the
consumer task connects with the other port. To support ping-
pong buffering, each memory core includes multiple sections,
allowing the producer to write the next data tile into one of
the free sections while the consumer reads one of the occupied
(i.e., previously written) sections.

To enforce access control and correct ordering, access
tokens are used. Naturally, there are as many tokens as there
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are sections in the memory cores. The free sections FIFO
stores the tokens of all the sections that do not contain any
valid data and are ready to be written to by the producer
task. The occupied sections FIFO contains tokens of all the
sections that contain valid data and are ready to be read by
the consumer task. The producer can read a token from the
free sections FIFO, and access the corresponding section from
the memory cores. Once the producer has written valid data to
the accessed section, it writes the previously held token to the
occupied sections FIFO. The consumer task reads that token
from the occupied sections FIFO, accesses valid data from the
corresponding section that was written by the producer. Once
done, it writes the held token to the free sections FIFO, so that
the producer can write to the corresponding section again.

Our design works on top of existing vendor HLS tools as it
only uses ap_fifo and ap_memory protocols for the FIFOs
and memory cores; both are supported by Vitis HLS.

B. Detailed Buffer Channel Implementation

Next, we discuss the detailed implementation of our buffer
channel design, shown in Fig. 5.
Free sections FIFO. This FIFO is read by the producer to
get access tokens for free sections and is written to by the
consumer to release token access for free sections. While this
module looks like a FIFO from the outside interface, internally,
it consists of multiple components. Before it is ready for use,
it needs to be initialized with all the sections’ tokens. While
one could manually do this initialization from the consumer
side, this is cumbersome and could fail if the accelerator runs
twice. Therefore, we decide to perform this initialization on
RTL reset by creating an initialization logic inside the free
sections FIFO module. The module contains an FSM with
two possible states: init and done. On RTL reset, the module
is put in the init state in which the relay isolates the FIFO
from outside access by asserting the full and empty signals.
While the FIFO is isolated from outside, it is connected to
the initialization logic which performs the initialization. Once
it is done, the state transitions to the done state in which the
FIFO is connected to the outside interface.
Occupied sections FIFO. This is a simple FIFO module
inherited from TAPA [15] that stores the tokens of occupied
sections. It is written by the producer to release a section with

freshly written data and read by the consumer to acquire access
to a previously written section.
Memory cores. The memory module contains multiple dual-
port memory cores. The number of memory cores is de-
termined by the user memory partition factors of all buffer
dimensions. The width of each memory core is determined by
the user data type of a single buffer element. The number of
sections in each memory core is determined by the user ping-
pong factor. The depth of each memory core is determined by
the user ping-pong factor, the size of each buffer dimension
and the partition factor. In addition, a user can configure the
memory core type to be either BRAM or URAM. For example,
if a user requests a 2D buffer channel of type float[10][4]

with two ping-pong sections and completely partitions the
second dimension, we need to generate four dual-port memory
cores, each memory core with a width of 32 bits and a depth
of 20.
Buffer channel generator. Depending on multiple user con-
figurations, the memory module configuration becomes com-
plex and variable. Unlike the FIFOs that can be simply instan-
tiated from one RTL module, we implement a buffer channel
generator to automatically compose a different RTL module
for each buffer channel based on the user configuration.

Note that the only resource overhead of our proposed buffer
design is due to the FIFOs which is neglible. For example,
when the number of sections is two, each FIFO consumes
less than 30 LUTs and 50 FFs.

V. FRONTEND PROGRAMMING INTERFACE

The buffer channel presented in Section IV is quite complex
to use by HLS programmers. First, the programmer needs to
manually configure the memory cores’ parameters as discussed
in Section IV-B. Second, to use the buffer channel in the pro-
ducer and consumer tasks, the programmer needs to manually
write the code to read a token from one FIFO, access the
corresponding section from the memory core as dictated by the
token, and then push the token back to the other FIFO. Third,
since there is no data dependency between the memory read
and write operations which are sandwiched between the read
from one FIFO and the write to the other FIFO, HLS compilers
will often schedule both the read and write together which
breaks the synchronization requirements. In order to mitigate
this, the user would have to create an artificial dependency
every time they want to access a tile of data from the buffer
channel, which is cumbersome to deal with.

To make our buffer channel design friendly for program-
mers, we implement a C++ template based interface to de-
clare and configure a buffer channel, and a C++ Resource
Acquisition Is Initialization (RAII) idiom based programming
model to use the buffer channel in the producer and consumer
tasks and transparently take care of the token exchange, buffer
access and artificial dependency creation. Finally, our frontend
tool automatically parses the user task-parallel HLS program,
extracts the task graph with the task communication metadata,
and transforms the producer and consumer task code to be
synthesized by Vitis HLS.



1 void top(..) {
2 buffer<
3 float[2][4], // type and size decl, can be multi-D
4 2, // number of ping-pong sections
5 array_partition< // partitioning scheme for each
6 normal, // dim, can be normal, complete,
7 cyclic<2> >, // block<factor>, cyclic<factor>
8 memcore<BRAM> // can be URAM or BRAM
9 > buf;

10 task()
11 .invoke(producer, buf, ...)
12 .invoke(consumer, buf, ...)
13 }

Listing 1. Buffer channel declaration example

A. Buffer Channel Declaration

Our buffer channel is highly configurable. Listing 1 shows
an example declaration of a buffer channel, where a user can
customize the following configurations using a C++ template.

1. Type: This is the type declaration of the buffer in the
standard C++ syntax. Multiple dimensions are supported.
For example, float[2][4] in Listing 1 is a 2 x 4 array of
floats. The data type of a single array element (e.g., float)
translates to the width of each memory core. The number of
dimensions and their dimension sizes, combined with the
following number of ping-pong sections and partitioning
schemes, determine the depth of each memory core.

2. Sections: This is the number of ping-pong sections. The
value of one means a regular buffer, two means a double
buffer, three means a triple buffer, and so on.

3. Array partitioning: This specifies the partitioning scheme
to be applied to the buffer. It is specified by writing
array_partition followed by a list of template argu-
ments for each dimension of the buffer. The possible
arguments can be normal for no partitioning, complete for
full partitioning, cyclic for cyclic partitioning, and block

for block partitioning. For cyclic and block, a partition
factor can be passed as a template argument. These types
refer to exactly what they refer to in Vitis HLS. Internally,
we use this information along with the dimension sizes to
determine how many cores to instantiate and their sizes.

4. Memory core type: We support both BRAM and URAM
core types. This is specified by writing memcore and pass-
ing BRAM or URAM as a template argument to it. Internally,
we use fixed templates for BRAM and URAM based
memory cores to make Vivado infer the right type.

Coming back to Listing 1, our frontend tool will parse the
code and get the metadata: it declares a buffer of type float,
which is two dimensional with sizes 2 and 4, has 2 sections,
is partitioned only on the second dimension cyclically by a
factor of 2, and uses BRAM as the underlying memory core.

B. Vector Addition Example and Buffer Channel Usage

To illustrate the buffer channel usage, we take vector
addition as an example, whose task graph is shown in Fig. 6. It
loads two vectors of floating points from the off-chip memory
as input, adds them, and writes the output to the off-chip
memory. Listing 2 shows the vector addition program written

load
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Off-chip 
memory

vector a

vector c
buffer c

c = a + b
Off-chip 
memory
vector b

Off-chip 
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Fig. 6. Task graph of vector addition example.

using PASTA’s programming model. The off-chip memory
types (denoted by mmap in PASTA, lines 21-22) are widened
to utilize the off-chip memory bandwidth effectively.

The top level function (lines 21-30) declares all the three
buffer channels (lines 23-25), one to accommodate a tile from
input vector a, another to accommodate a tile from input vector
b and lastly one to store a tile of the output vector c. The
top level function shows all the task invocations (lines 26-
29). Naturally, the load tasks need access to off-chip memory
from where they copy data in the form of tiles to buffer based
channels. The vadd task (lines 5-20) receives these input tiles
of data via buf_in_a and buf_in_b buffer channels, performs
addition via unrolled loops and stores the data of resultant tiles
in buffer channel buf_out. The store task takes that as input
and writes the data to off-chip memory.
Buffer channel usage. To make it easy to use our buffer
channel in the producer and consumer tasks, we use the C++
RAII idiom to transparently take care of the cumbersome token
exchange, buffer access and artificial dependency creation as
discussed earlier. As shown in listing 2, the vadd task (lines
5-20) acts as a consumer task for the buffers buf_in_a and
buf_in_b, and acts a producer task for the buffer buf_out.
In general, the producer and consumer tasks take the buffer as
a reference argument of type obuffer and ibuffer (lines
5-7), respectively, so that the tool can distinguish between
them. Note that the buffer template class inherits from
both ibuffer and obuffer template classes, which have a
different implementation of the acquire member function.

To use a buffer, its acquire() member function (line 10)
can be called, which blocks on the source FIFO (i.e., the free
sections FIFO for a producer task and the occupied sections
FIFO for a consumer task) until a token can be retrieved from
it. Once a token is received, a new object of type section_t is
instantiated that has a reference to the corresponding section.
The user can call the operator() on the section_t object
to get this reference (line 12). This reference can just be used
as a regular array of the same type and dimensions.

Once the returned section_t object goes out of scope, the
token is written back to the sink FIFO (i.e., the occupied sec-
tions FIFO for a producer task and the free sections FIFO for a
consumer task) by the section_t object’s destructor function,
marking the release of the buffer. As the communication with
memory cores and writing the token to the sink FIFO do not
have any data dependency, vendor HLS will often do the FIFO
write before the memory communication. To prevent this, we
introduce an artificial dependency in the implementation of
section_t to ensure the ordering of these operations.



1 // template arguments of ibuffer and obuffer are identical
2 // to the declarations in the `top` task, pruning to save space
3 void load(mmap<WIDE_TYPE> mem, obuffer<...> &buf, ...) { ... }
4 void store(mmap<WIDE_TYPE> mem, ibuffer<...> &buf, ...) { ... }
5 void vadd(ibuffer<float[LEN], N_SECTIONS, ...>& buf_in_a,
6 ibuffer<float[LEN], N_SECTIONS, ...>& buf_in_b,
7 obuffer<float[LEN], N_SECTIONS, ...>& buf_out,
8 int n_tiles ) {
9 for (int i = 0; i < n_tiles; i++) {

10 auto section_in_a = buf_in_a.acquire(); // buffer acquired
11 // buf_in_a_ref references to the actual buffer section
12 auto &buf_in_a_ref = section_in_a();
13 // omitted similar code to get buf_in_b_ref and buf_out_ref
14 for (int j = 0; j < LEN; j++) {
15 #pragma HLS unroll factor=FACTOR
16 buf_out_ref[j] = buf_in_a_ref[j] + buf_in_b_ref[j];
17 }
18 // buffers automatically released when they are out of scope
19 }
20 }
21 void top(mmap<WIDE_TYPE> vec_a, mmap<WIDE_TYPE> vec_b,
22 mmap<WIDE_TYPE> vec_c, int n_tiles) {
23 buffer<float[LEN], N_SECTIONS,
24 array_partition<cyclic<FACTOR>>,
25 memcore<BRAM>> buf_a, buf_b, buf_c;
26 task().invoke(load, vec_a, buf_a, n_tiles)
27 .invoke(load, vec_b, buf_b, n_tiles)
28 .invoke(vadd, buf_a, buf_b, buf_c, n_tiles)
29 .invoke(store, vec_c, buf_c, n_tiles);
30 }

Listing 2. Vector addition (vadd) example in PASTA

Summary. In short, to use a buffer channel in a producer or
consumer task, a user only needs two lines of code (line 10
and 12): one is to call the acquire() member function of the
buffer to return the buffer section (section_t) object, and
the other is to call the operator() on the section_t object
to get the reference to the buffer section with the actual data
type. All the rest are transparently handled in PASTA. Note
that in PASTA, besides the task invocation code and the buffer
channel (and/or FIFO channel) related code, inside each task,
the majority of the code remains the same as Vitis HLS code.

C. Buffer Channel Library Implementation

The above mentioned buffer types (template classes)—i.e.,
buffer, ibuffer and obuffer—have two implementations.
One is a functional thread-safe C++ implementation that is
used in the software simulation of the program for quick
prototyping and correctness verification. The second is a
dummy implementation that is merely used to force Vitis
HLS to generate the correct interface ports for the FIFOs and
the memory cores in each task’s RTL module. Additionally,
the dummy implementation takes care of all the transparent
actions described in the previous section.

D. Parser and Program Transformation

We extend TAPA’s parser [15], which is a source code
analyzer and transformer based on Clang [16], to parse the
buffer channel declarations and task invocations that take
buffer arguments. Our parser traverses the C++ abstract syntax
tree (AST) to analyze the buffer declarations, get all the
metadata such as the data type, number of dimensions, size
of each dimension, number of ping-pong sections, memory
partitioning scheme requested on each dimension, and the
underlying memory core implementation requested. Then it

builds the task graph with this metadata, which is later used
by the high level-floorplanner (shown in Fig. 3).

Based on the metadata, our parser also transforms the source
code of the producer and consumer tasks (as well as the
top level function) to add appropriate interface pragmas and
partitioning pragmas for the buffer channels—including their
free sections FIFOs, occupied FIFOs, and memory cores—
such that Vitis HLS can generate the right RTL modules for
later RTL stitching with the generated buffer channel modules.

VI. BACKEND FREQUENCY OPTIMIZATION

To improve the timing closure and clock frequency of a
task-parallel HLS program that supports both FIFO and buffer
based communication channels, we extend the TAPA/Auto-
Bridge [7], [8] backend and mainly highlight the optimizations
needed to support the newly added buffer channels in PASTA
(FIFO channels are also inherited and supported). It has two
major steps: 1) a coarse-grained floorplanning step to place
the tasks and communication channels into local FPGA slots,
and 2) a pipelining step to add pipeline registers between tasks
and global communication channels.

Shown in Fig. 3, based on the metadata extracted by our
parser (Section V-D) and resource consumption reports of each
task, the high-level floorplanner calculates the total number
of wires in the buffer channel and the resource consumption
of the buffer channel. It then uses this information to find a
mapping of tasks to local FPGA slots so as to minimize the
total number of wires crossings SLRs while keeping resource
consumption of each slot within certain limits. This is done
by solving an ILP program as detailed in AutoBridge [7].

After the high-level placement, global buffer channels that
cross slot boundaries need to be pipelined. This is complicated
as the buffer channel consists of two FIFOs and one memory
module consisting of multiple memory cores. The FIFOs are
placed in slots and pipelined the same way as it is done in
AutoBridge [7]. The placement and pipelining of memory
cores has some subtleties that need to be addressed.

A. Placement and Pipelining of Entire Buffer Channel

Assume a buffer channel that consists of a single memory
core. Fig. 7 (a) and (b) show two alternatives of placing and
pipelining the memory core. In Fig. 7(a), the memory core
itself is mapped to be nearby the consumer task and pipeline
registers are added between the producer task and the memory
core. Therefore, the consumer can read/write the memory core
as it normally would without extra latency. The producer task
can write data as it normally would, since extra latency on the
paths will not affect write operations. However, if the producer
needs to read some data (as we observed in applications like
KMeans), it suffers from an additional latency that is twice the
number of registers added on the path (both for the address and
data signals). Since read operations are sensitive to the access
latency, the producer task code would need to be updated and
recompiled with this additional latency taken into account;
otherwise, it may read incorrect data at an earlier clock cycle.
Another alternative is to map the memory core nearby the
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Fig. 7. Two alternatives of placing and pipelining memory cores: (a) placing
on consumer task side and pipelining producer access, (b) placing on producer
task side and pipelining consumer access.
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producer task and add pipeline registers between the consumer
task and the memory core, shown in Fig. 7(b). Similarly, the
consumer task code would need to be updated and recompiled
with the additional read latency taken into account.

Since most often, a producer task writes the buffer channel
and a consumer task reads the buffer channel, we decide to
place the memory core nearby the consumer and add pipeline
registers on the producer side. As a result, besides rare cases
where a producer also reads from the buffer channel, neither
the producer nor the consumer suffers from any additional
latency. To accommodate for the rare producer reads, we mod-
ify the producer code and recompile it again with the added
latency by inserting a ‘latency’ parameter in the interface
pragma, which is indicated by the dashed arrow from the high-
level floorplanner to the CPP source files in Fig. 3.

Fig. 8 shows how the whole buffer channel is placed and
pipelined. The free sections FIFO is constrained nearby the
producer task that consumes this FIFO, while the occupied
sections FIFO is constrained nearby the consumer task that
consumes this FIFO. The memory cores are constrained nearby
the consumer task as discussed before. The figure shows how
each of the modules and pipeline registers are mapped to
FPGA slots, using an example where the producer is to be
placed in slot 1 and the consumer is to be placed in slot 2.

VII. EXPERIMENTAL RESULTS

A. Benchmark Description and PASTA’s Expressiveness

We implement four benchmarks in PASTA derived from the
widely used Rodinia-HLS [9] benchmark suite to demonstrate
the expressiveness and effectiveness of our framework. The
high-level task graphs of our benchmarks are shown in Fig. 9.
All of them have a load task to read input from off-chip
memory and a store task (sometimes incorporated in the merge
task) to write output data to off-chip memory. All of the bench-
marks use buffer based communication between tasks: all the
buffers are ping-pong based and have memory partitioning.
The motivational pathfinder benchmark in Section II-B uses
both buffer and FIFO based communication channels.

KMeans KNN

NW

Pathfinder

Fig. 9. High-level task graph of our benchmarks. Circles: tasks, thick arrows:
buffer channels, thin arrows: FIFO channels, blue squares: HBM banks.

KNN. The k-nearest neighbors (KNN) benchmark takes a
2D query point and a set of search space points divided
between different memory banks, and computes the K (in our
implementation K = 8) nearest neighbors to the query point.
Each PE processes its share of the search space and writes
partial top K candidates to the merge task which picks the top
K global candidates and writes it back to off-chip memory.
KMeans. The KMeans clustering benchmark takes a search
space of 2D points, K clusters (K = 8 in our case), initial
memberships of points to clusters as inputs, and performs
multiple iterations. In each iteration, it finds new memberships
of points to current clusters and recomputes the clusters based
on that new membership. The new membership and new
clusters are written back to off-chip memory, from where
they are loaded again in the next iteration. Each PE of the
benchmark reads from two memory banks, one for the points
and the other for the memberships which it also writes back
to. Once a PE is done processing all its data, its partial new
clusters are sent to the merge task, which calculates the global
new clusters and writes them to off-chip memory.
NW. The Needleman-Wunsch (NW) algorithm performs DNA
sequencing on short reads of length 128. The algorithm is
based on dynamic programming and works by filling a 2D grid
of 128×128. We break this grid into 16 parts and process the
diagonals in parallel. We create multiple PEs, each PE capable
of handling 4 short read alignment jobs at a time. Finally, the
aligned reads are written to the off-chip memory.

B. Experimental Setup

We implement our PASTA framework on top of TAPA/Au-
toBridge [7], [8] and test it using the aforementioned bench-
marks. All of these benchmarks are scalable, in the sense that
we can use more memory banks and replicate more PEs to
process more data in parallel (Fig. 9). For each benchmark,
we create multiple configurations by sweeping from 2 PEs to
12 PEs. For each configuration, we write the baseline purely
in Vitis HLS C++ programming style and perform synthesis,
place and route via standard Vitis flow. We compare it with
a task-parallel version written using PASTA’s programming
model, which is optimized for timing closure by PASTA. For
both versions, the target frequency is set to 300 MHz. All
experiments are performed on the AMD/Xilinx HBM-based



TABLE I. Frequency, performance, and resource utilization comparison of Vitis and PASTA for benchmarks with different configurations.

Benchmark Config
LUT (%) FF (%) BRAM (%) DSP (%) Frequency (MHz)

Speedup
Vitis PASTA Vitis PASTA Vitis PASTA Vitis PASTA Vitis PASTA F. Improv

KNN

2 PEs 16.87 16.88 9.36 9.59 20.41 20.61 4.30 5.01 295 299 1.4% 0.6%
4 PEs 25.43 25.71 12.92 13.21 30.78 31.27 9.97 9.97 257 291 13.2% 12.4%
6 PEs 33.99 34.61 16.21 16.78 41.15 41.48 14.94 14.94 242 258 6.6% 6.2%
8 PEs 42.60 41.98 19.63 19.26 51.51 52.41 19.90 19.9 181 252 39.2% 38.5%

10 PEs 51.55 52.26 23.05 24.17 61.88 62.97 24.87 24.87 183 259 41.5% 39.6%
12 PEs 60.26 57.93 26.44 26.07 72.25 73.54 29.83 29.83 184 238 29.3% 28.0%

KMeans

2 PEs 16.12 16.41 12.35 12.61 15.50 15.67 9.11 9.11 300 300 0.0% 1.3%
4 PEs 24.19 24.57 18.27 19.59 21.01 21.38 18.17 18.20 273 300 9.9% 12.1%
6 PEs 32.22 32.72 25.19 26.47 26.51 26.98 27.22 27.24 249 275 10.4% 13.7%
8 PEs 40.26 41.22 31.66 33.38 32.12 32.59 36.30 36.28 177 273 54.2% 55.5%

10 PEs 49.00 49.54 38.06 40.26 37.62 38.19 45.35 45.35 162 239 47.5% 46.3%
12 PEs 58.09 58.56 44.45 47.10 43.13 43.80 54.39 54.41 150 216 44.0% 43.1%

Pathfinder

2 PEs 10.12 9.69 6.69 6.72 17.93 17.93 0.04 0.04 258 265 2.7% 3.9%
4 PEs 12.51 11.59 7.67 7.83 25.82 25.92 0.04 0.04 250 276 10.4% 9.2%
6 PEs 14.88 13.48 8.65 8.92 33.71 33.80 0.04 0.04 194 256 32.0% 32.0%
8 PEs 16.60 15.37 9.62 10.10 41.59 41.69 0.04 0.04 192 259 34.9% 32.1%

10 PEs 17.98 17.22 10.61 11.23 49.48 49.58 0.04 0.04 166 244 47.0% 42.8%
12 PEs 20.19 19.01 11.59 12.21 57.37 57.47 0.04 0.04 174 237 36.2% 34.1%

NW

2 PEs 12.23 12.29 8.73 8.85 20.44 20.44 0.04 0.04 220 225 2.3% 2.2%
4 PEs 16.73 16.37 11.88 12.14 30.85 30.95 0.04 0.04 221 222 0.5% 0.4%
6 PEs 20.44 20.7 15.03 15.42 41.27 41.37 0.04 0.04 211 222 5.2% 0.0%
8 PEs 24.69 25.03 18.18 18.71 51.79 51.79 0.04 0.04 200 222 11.0% 9.8%

10 PEs 28.9 29.35 21.33 22.13 62.2 62.2 0.04 0.04 165 208 26.1% 23.4%
12 PEs 33.13 33.8 24.48 25.75 72.62 72.62 0.04 0.04 154 215 39.6% 42.4%
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Fig. 10. Frequency optimization results on different benchmarks

Alveo U280 datacenter FPGA board, with Vitis HLS and Vitis
version 2021.2 and XRT version 2021.2. The clock frequency
and resource utilization results are based on post place and
route reports. The final execution times are measured on board.

C. Frequency, Performance, and Resource Results

Frequency improvement results. Fig. 10 shows our fre-
quency optimization results across the four benchmarks on
Alveo U280 FPGA. For KNN and KMeans we observe similar
trends. As the design is scaled up in the number of PEs, the
Vitis baseline frequency steadily drops. KNN drops down to
around 180 MHz for the design with 8 or more PEs. KMeans
also experiences a significant frequency drop from 8 PEs on,
and drops all the way to 150 MHz for the 12-PE design. Our
PASTA version suffers much less frequency degradation with

more PEs and overall keeps the frequency much higher. The
frequency improvement by PASTA is significant when there
are 8 or more PEs. For example, PASTA achieves 259 MHz
for 10-PE KNN and 273 MHz for 8-PE KMeans, 41.5% and
54.2% better than the Vitis versions.

Pathfinder and NW show similar trends of frequency degra-
dation to KNN and KMeans. There is one difference: even for
the 2-PE designs, both the Vitis and PASTA versions achieve
much lower frequencies than 300 MHz. The reason is: unlike
KMeans and KNN, these two designs have critical paths with
high logic delays even inside the compute logic, which our tool
does not address. When there are more PEs, especially with 8
or more PEs, routing congestion further significantly degrades
the frequency. PASTA alleviates those routing congestions and
achieves 47.0% and 39.6% higher frequency than Vitis for the
10-PE Pathfinder and 12-PE NW designs.

In summary, for the four benchmarks with 8 or more PEs,
on average, PASTA improves their clock frequency by 36%
compared to Vitis. The highest improvement is 54.2% for
the 8-PE KMeans design. Note that TAPA/AutoBridge [7],
[8] do not support our benchmarks due to the buffer-based
communication between tasks in these benchmarks.
On board execution time speedup. We also measure the
on board execution time for all designs and verify that the
frequency improvement roughly translates to a similar exe-
cution time speedup, as shown in the last two columns of
Table I. The minor differences are due to variance in the
measurement of on-board execution time. Note that we have
conducted hardware simulations and verified that indeed the



the speedup comes from frequency improvement and not from
inherent difference in the number of cycles of both designs.
Resource utilization results. In terms of resource consump-
tion, shown in Table I, all configurations show marginal
differences in the resource utilization of both Vitis and PASTA
versions. The Vitis baseline is one large monolithic C/C++
styled HLS design, while the PASTA version consists of
a graph of (smaller) parallel tasks. While the lower level
hardware units are similar, the overall structures are different.
As a result, backend tools can sometimes optimize certain
resources in the baseline but not in the PASTA version, and
vice versa (e.g., FFs for KMeans). Therefore, small differences
in resource utilization are common in both directions (PASTA
consuming less and more).

The neglible overhead in resources confirms the efficient
hardware design of our buffer channel in PASTA.

VIII. RELATED WORK

As we build our work on top of TAPA/AutoBridge [7], [8],
it is our closest related work. As explained in Section II-C and
II-D, while TAPA/AutoBridge is a great step in the direction of
alleviating routing congestion by HLS and physical design co-
optimization, its programming model is limited to task-parallel
applications where tasks communicate via FIFOs only. In this
work, we extend the support to a much broader class of designs
where tasks can communicate via both FIFOs and buffers, by
addressing a set of unique challenges to support buffer-based
task communication as summarized in Section III-B. Next, we
discuss other related literature that focuses on optimization for
multi-die FPGAs, HLS and physical design co-optimization,
and floorplanning algorithm.
Optimization for multi-die FPGAs. Modern datacenter FP-
GAs often consist of multiple dies, which introduce both
opportunities and challenges to scale up accelerator designs.
[17] tries to minimize the number (not the length) of cross-die
signals by modifying the cost function of placement. However,
their approach is not HLS aware and does not shorten the
critical paths that do cross dies. On the other hand, by being
aware of the HLS design, we can pipeline latency-insensitive
communication channels that cross dies to shorten the critical
path. [18] proposes a solution to virtualize an FPGA by
standardizing the partitioning of FPGA resources and mapping
different applications (similar to independent tasks without
communication channels) to different partitions. We focus on
scaling up a single application that is more challenging.
HLS and physical design co-optimization. [19] proposes
an approach to iterate between HLS and physical design,
back annotating critical information in HLS to improve the
frequency. While effective, it is not suitable for modern
datacenter FPGA designs that are huge in size, where a single
run of physical design tools can take many hours to a day. [20]
uses graph neural networks to predict operation mapping and
get better delay estimates. However, it is limited to operations
while we are tackling the problem of routing congestion that
has high net delays. [21], [22] work on predicting routing
congestion in advance using machine learning methods and

[23] even back-annotates it on the high-level source code.
While effective in identifying congestion regions, solving it
is left to the user. [24] analyzes common patterns that can
lead to timing problems and suggest potential fixes; but again,
is left to the user to fix the timing issues.
Floorplanning algorithm. Floorplanning for heterogeneous
FPGA has been studied in many previous efforts to fit hi-
erarchical applications. [25] presents one of the first FPGA
floorplanning algorithms for FPGAs with heterogeneous re-
sources. It uses a slicing tree to present FPGA floorplan and
develops an algorithm to find the optimal slicing structure. [26]
uses a three-stage solution that generates a partition tree with
all modules first, then generates a set of floorplan topologies
and lastly realizes a feasible slicing tree for a specific FPGA.
Unlike [25] and [26] that use simulated-annealing mode and
deterministic model respectively to generate feasible topology,
we focus on coarse-grained floorplanning with a partitioning-
based approach that is similar to TAPA/AutoBridge [7], [8].

IX. CONCLUSION AND FUTURE WORK

In this paper, we present our PASTA framework that pro-
vides a general and scalable task-parallel HLS programming
model on modern multi-die FPGAs, which supports both
FIFO and buffer based communication between tasks. PASTA
is built on top of state-of-the-art open source framework
TAPA/AutoBridge: it automatically generates a high-frequency
FPGA accelerator from an input task-parallel HLS program
via HLS and physical design co-optimization. To achieve this,
we first design a decoupled latency-insensitive buffer channel
abstraction on top of vendor HLS tools, which supports ping-
pong buffering and memory partitioning. At the frontend, we
design an easy-to-use programming interface for end users and
transparently take care of the cumbersome interaction between
their high-level task-parallel program and our buffer channel
abstraction. At the backend, we automate the coarse-grained
placement and pipelining for the buffer channels and provide
an end-to-end automation flow. We test the effectiveness of
PASTA on a set of task-parallel benchmarks on the AMD/X-
ilinx HBM-based Alveo U280 datacenter FPGA: for large
design configurations that use 8 or more PEs, PASTA achieves
an average of 36% (up to 54%) frequency improvement over
Vitis. In future work, we plan to perform in-depth analysis
on the granularity of tasks and in-depth comparison of FIFO
(i.e., streaming) and buffer based task-parallel designs. Our
PASTA framework will be open-sourced in the near future at
https://github.com/SFU-HiAccel/pasta.
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