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◆ Rapid development cycle: Productivity!

◆ Competitive quality of result

▪ SDC scheduling [DAC’06, TCAD’11], frequency optimizations [DAC’20, FPGA’21]

Widespread Adoption of High-Level Synthesis

[DAC’06]: Cong and Zhang. An Efficient and Versatile Scheduling Algorithm Based On SDC Formulation. In DAC, 2006.
[TCAD’11]: Cong et al. High-Level Synthesis for FPGAs: From Prototyping to Deployment. TCAD, 2011.
[DAC’20]: Guo et al. Analysis and Optimization of the Implicit Broadcasts in FPGA HLS to Improve Maximum Frequency. In DAC, 2020.
[FPGA’21]: Guo et al. AutoBridge: Coupling Coarse-Grained Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In FPGA, 2021.
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Limitations of Current High-Level Synthesis

◆ Tailored for data-parallel programs

▪ Fine-grained control via #pragmas

◆ Task-parallel programs are limited

▪ Poor programmability

▪ Restricted software simulation

▪ Slow code generation

◆ Our solution: TAPA (task-parallel)

▪ Convenient programming interfaces

▪ Unconstrained software simulation

▪ Hierarchical code generation
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Why Go Task-Parallel?

◆ Data parallelism may be limited

▪ PageRank / graph convolutional networks / on-chip network switching

◆ Task parallelism can better accommodate variable DRAM latency

◆ Task parallelism shows better scalability

▪ Data-parallel applications can be implemented as task-parallel programs

• Systolic arrays [ICCAD’18, PolySA]

• Stencil [ICCAD’18, SODA]

[ICCAD’18]: Cong and Wang. PolySA: Polyhedral-Based Systolic Array Auto-Compilation. In ICCAD, 2018.
[ICCAD’18]: Chi et al. SODA: Stencil with Optimized Dataflow Architecture. In ICCAD, 2018.
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Real-World Task-Parallel Benchmarks

Benchmark Application #Tasks #Task Instances #Channels

cannon Cannon’s matrix multiplication algorithm 5 91 344

cnn Systolic array generated by PolySA [ICCAD’18] 14 209 366

gaussian Stencil generated by SODA [ICCAD’18] 15 564 1602

gcn Graph convolutional network [ICLR’17] 5 12 25

gemm Systolic array generated by PolySA [ICCAD’18] 14 207 364

network 8×8 Omega switching network 3 14 32

page_rank Edge-centric PageRank accelerator 4 18 89

[ICLR’17]: Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR, 2017.
[ICCAD’18]: Cong and Wang. PolySA: Polyhedral-Based Systolic Array Auto-Compilation. In ICCAD, 2018.
[ICCAD’18]: Chi et al. SODA: Stencil with Optimized Dataflow Architecture. In ICCAD, 2018.
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A Motivating Example

◆ 4 PEs interconnected w/ a ring

▪ PEs send packets to ring nodes & 

receive packets from ring nodes

▪ Ring nodes forward packets 

conditionally based on the 

destination PE specified in the 

packet header

1→3
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Extending Kernel Programming Interfaces

Kernel code w/ Vivado HLS

Equivalent kernel code w/ TAPA

For kernel code, TAPA is much shorter to write 
with peeking and transaction API support.

1→2 2→31→3 2→3
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Simplifying Host-Kernel Communication Interfaces

For host code, TAPA is also much shorter to write by
allowing programmers call the kernel using a single
function call.Host code for Vivado HLS code as an OpenCL kernel

Equivalent host code for TAPA
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Core #1Core #1

Core #1

Thread #1

Software Simulation

Simulate PE 1

Simulate RingNode 1

Sequential simulator Multi-thread simulator TAPA’s coroutine-based simulator

Incorrect

Thread #1

Simulate
PE 1

Thread #2

Simulate
RingNode 1

Thread #3

Simulate
PE 2

Thread #4

Simulate
RingNode 2

...

...

Thread #1

Coroutine #1

Simulate
PE 1

Coroutine #2

Simulate
RingNode 1

Coroutine #3

Simulate
PE 2

Coroutine #4

Simulate
RingNode 2

...

Correct & 
scalable

Not 
scalable

[1]: https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
[2]: https://www.boost.org/doc/libs/1_73_0/libs/coroutine2/doc/html/coroutine2/performance.html

26ns21.2-2.2μs1

https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://www.boost.org/doc/libs/1_73_0/libs/coroutine2/doc/html/coroutine2/performance.html
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Run HLS 
for PE

RTL Code Generation

Run HLS for PE 1

Run HLS for PE 2

Existing flow TAPA’s hierarchical approach

Unnecessary 
work

All PEs are instances of the same task
(C++ function). All ring nodes are also
instances of the same task. No 

redundant 
work!

...

Run HLS for PE 3

Run HLS for PE 4

Run HLS for 
RingNode

Instantiate RTL modules
Create FSM that controls them

...
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Overall TAPA Workflow
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Kernel LoC Reduction
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Host LoC Reduction
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Simulation Time Reduction
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Code Generation Time Reduction
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Resource Usage Comparison
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Beyond Productivity Enhancement

◆ Extended AXI4 memory-mapped interface

▪ Asynchronous access w/ separate AR/R/AW/W/B channels

▪ Shared access among multiple task instances

◆ Detached tasks/smarter FIFO templates/AutoBridge integration/…

◆ For more details

▪ TAPA is open-source: https://github.com/UCLA-VAST/tapa

https://github.com/Licheng-Guo/AutoBridge
https://github.com/UCLA-VAST/tapa
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