
1

Extending High-Level Synthesis
for Task-Parallel Programs

Yuze Chi*, Licheng Guo*, Jason Lau*, Young-kyu Choi*†, Jie Wang*, Jason Cong*

*University of California, Los Angeles, †Inha University

{chiyuze,cong}@cs.ucla.edu



2

◆ Rapid development cycle: Productivity!

◆ Competitive quality of result

▪ SDC scheduling [DAC’06, TCAD’11], frequency optimizations [DAC’20, FPGA’21]

Widespread Adoption of High-Level Synthesis

[DAC’06]: Cong and Zhang. An Efficient and Versatile Scheduling Algorithm Based On SDC Formulation. In DAC, 2006.
[TCAD’11]: Cong et al. High-Level Synthesis for FPGAs: From Prototyping to Deployment. TCAD, 2011.
[DAC’20]: Guo et al. Analysis and Optimization of the Implicit Broadcasts in FPGA HLS to Improve Maximum Frequency. In DAC, 2020.
[FPGA’21]: Guo et al. AutoBridge: Coupling Coarse-Grained Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die FPGAs. In FPGA, 2021.



3

Limitations of Current High-Level Synthesis

◆ Tailored for data-parallel programs

▪ Fine-grained control via #pragmas

◆ Task-parallel programs are limited

▪ Poor programmability

▪ Restricted software simulation

▪ Slow code generation

◆ Our solution: TAPA (task-parallel)

▪ Convenient programming interfaces

▪ Unconstrained software simulation

▪ Hierarchical code generation



4

Why Go Task-Parallel?

◆ Data parallelism may be limited

▪ PageRank / graph convolutional networks / on-chip network switching

◆ Task parallelism can better accommodate variable DRAM latency

◆ Task parallelism shows better scalability

▪ Data-parallel applications can be implemented as task-parallel programs

• Systolic arrays [ICCAD’18, PolySA]

• Stencil [ICCAD’18, SODA]

[ICCAD’18]: Cong and Wang. PolySA: Polyhedral-Based Systolic Array Auto-Compilation. In ICCAD, 2018.
[ICCAD’18]: Chi et al. SODA: Stencil with Optimized Dataflow Architecture. In ICCAD, 2018.



5

Real-World Task-Parallel Benchmarks

Benchmark Application #Tasks #Task Instances #Channels

cannon Cannon’s matrix multiplication algorithm 5 91 344

cnn Systolic array generated by PolySA [ICCAD’18] 14 209 366

gaussian Stencil generated by SODA [ICCAD’18] 15 564 1602

gcn Graph convolutional network [ICLR’17] 5 12 25

gemm Systolic array generated by PolySA [ICCAD’18] 14 207 364

network 8×8 Omega switching network 3 14 32

page_rank Edge-centric PageRank accelerator 4 18 89

[ICLR’17]: Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR, 2017.
[ICCAD’18]: Cong and Wang. PolySA: Polyhedral-Based Systolic Array Auto-Compilation. In ICCAD, 2018.
[ICCAD’18]: Chi et al. SODA: Stencil with Optimized Dataflow Architecture. In ICCAD, 2018.



6

A Motivating Example

◆ 4 PEs interconnected w/ a ring

▪ PEs send packets to ring nodes & 

receive packets from ring nodes

▪ Ring nodes forward packets 

conditionally based on the 

destination PE specified in the 

packet header

1→3



7

Extending Kernel Programming Interfaces

Kernel code w/ Vivado HLS

Equivalent kernel code w/ TAPA

For kernel code, TAPA is much shorter to write 
with peeking and transaction API support.

1→2 2→31→3 2→3



8

Simplifying Host-Kernel Communication Interfaces

For host code, TAPA is also much shorter to write by
allowing programmers call the kernel using a single
function call.Host code for Vivado HLS code as an OpenCL kernel

Equivalent host code for TAPA



9

Core #1Core #1

Core #1

Thread #1

Software Simulation

Simulate PE 1

Simulate RingNode 1

Sequential simulator Multi-thread simulator TAPA’s coroutine-based simulator

Incorrect

Thread #1

Simulate
PE 1

Thread #2

Simulate
RingNode 1

Thread #3

Simulate
PE 2

Thread #4

Simulate
RingNode 2

...

...

Thread #1

Coroutine #1

Simulate
PE 1

Coroutine #2

Simulate
RingNode 1

Coroutine #3

Simulate
PE 2

Coroutine #4

Simulate
RingNode 2

...

Correct & 
scalable

Not 
scalable

[1]: https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
[2]: https://www.boost.org/doc/libs/1_73_0/libs/coroutine2/doc/html/coroutine2/performance.html

26ns21.2-2.2μs1

https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://www.boost.org/doc/libs/1_73_0/libs/coroutine2/doc/html/coroutine2/performance.html


10

Run HLS 
for PE

RTL Code Generation

Run HLS for PE 1

Run HLS for PE 2

Existing flow TAPA’s hierarchical approach

Unnecessary 
work

All PEs are instances of the same task
(C++ function). All ring nodes are also
instances of the same task. No 

redundant 
work!

...

Run HLS for PE 3

Run HLS for PE 4

Run HLS for 
RingNode

Instantiate RTL modules
Create FSM that controls them

...



11

Overall TAPA Workflow



12

Kernel LoC Reduction



13

Host LoC Reduction



14

Simulation Time Reduction



15

Code Generation Time Reduction



16

Resource Usage Comparison



17

Beyond Productivity Enhancement

◆ Extended AXI4 memory-mapped interface

▪ Asynchronous access w/ separate AR/R/AW/W/B channels

▪ Shared access among multiple task instances

◆ Detached tasks/smarter FIFO templates/AutoBridge integration/…

◆ For more details

▪ TAPA is open-source: https://github.com/UCLA-VAST/tapa

https://github.com/Licheng-Guo/AutoBridge
https://github.com/UCLA-VAST/tapa


18

Q&A

This work is partially supported by a Google Faculty Award, the NSF RTML program

(CCF1937599), NIH Brain Initiative (U01MH117079), the Xilinx Adaptive Compute

Clusters (XACC) program, and CRISP, one of six JUMP centers.


